
ECE4510/5510: Feedback Control Systems. 3–1

DYNAMIC RESPONSE

3.1: System response in the time domain

■ We can now model dynamic systems with differential equations.

What do these equations mean?

■ We’ll proceed by looking at a system’s response to certain inputs in

the time domain.

■ Then, we’ll see how the Laplace transform can make our lives a lot

easier by simplifying the math.

■ This will give insights into how we might specify the way the system

should respond.

■ Finally, we’ll preview how adding dynamics (e.g., a controller) can

change how the system responds.

Some important input signals

■ Several signals recur throughout this course.

■ The unit step function:

1(t) D

{

1, t � 0I

0, otherwise.
t

1(t)

■ The unit ramp function:

r(t) D

{

t, t � 0I

0, otherwise.

t

r (t)
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■ The unit parabola function:

p(t) D







t2

2
, t � 0I

0, otherwise.
t

p(t)

■ The cosine/sine functions:

t

cos(t)

t

sin(t)

■ The (ideal) impulse function, δ(t):

� Very strange “generalized” function, defined only under an integral.

δ(t) D 0, t 6D 0 zero duration
∫
1

�1

δ(t) dt D 1. unit area.

Symbol
t

δ(t)

� Sifting property:1

∫
1

�1

x(τ )δ(t � τ) dτ D x(t).

1 Assumes that x(t) is continuous at t D τ . Interpretation: no value of x(t) matters

except that over the short range where δ(t) occurs.

Lecture notes prepared by and copyright © 1998–2021, Gregory L. Plett and M. Scott Trimboli



ECE4510/ECE5510, DYNAMIC RESPONSE 3–3

Time response of a linear time invariant system

■ Let y(t) be the output of an LTI system with input x(t).

y(t) D T

[

x(t)
]

D T

[∫
1

�1

x(τ )δ(t � τ) dτ

]

(sifting)

D

∫
1

�1

x(τ )T
[

δ(t � τ)
]

dτ . (linear)

Let h(t, τ ) D T

[

δ(t � τ)
]

D

∫
1

�1

x(τ )h(t, τ ) dτ

If the system is time invariant, h(t, τ ) D h(t � τ)

D

∫
1

�1

x(τ )h(t � τ) dτ (time invariant)

4

D x(t) � h(t).

■ The output of an LTI system is equal to the convolution of its impulse

response with the input.

■ This makes life EASY (TRUST me!)

EXAMPLE: Finding an impulse response:

■ Consider a first-order system, Py(t)C ky(t) D u(t).

■ Let y(0�) D 0, u(t) D δ(t).

■ For positive time we have Py(t)C ky(t) D 0. Recall from your

differential-equation math course: y(t) D Aest , solve for A, s.
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Py(t) D Asest

Asest
C k Aest

D 0

s C k D 0

s D �k.

■ We have solved for s; now, solve for A.
∫ 0C

0�
Py(t) dt

︸ ︷︷ ︸

y(t)j0
C

0�

C k

∫ 0C

0�
y(t) dt

︸ ︷︷ ︸

0

D

∫ 0C

0�
δ(t) dt

︸ ︷︷ ︸

1

y(0C)� y(0�) D 1

Ae�k0C
� 0 D 1

A D 1.

■ Response to impulse: h(t) D e�kt , t > 0.

■ h(t) D e�kt1(t).

■ Response of this system to general input:

y(t) D

∫
1

�1

h(τ )u(t � τ) dτ

D

∫
1

�1

e�kτ1(τ )u(t � τ) dτ

D

∫
1

0

e�kτu(t � τ) dτ .

Lecture notes prepared by and copyright © 1998–2021, Gregory L. Plett and M. Scott Trimboli



ECE4510/ECE5510, DYNAMIC RESPONSE 3–5

3.2: Transfer functions

■ Response to impulse = “impulse response”: h(t).

■ Response to general input = messy convolution: h(t) � u(t).

■ To choose a simpler example, what is the response to a cosine?

A cos(ωt) D
A

2

(

e jωt
C e� jωt

)

Break it down: What is the response to an exponential?

■ Let u(t) D est , where s is complex.

y(t) D

∫
1

�1

h(τ )u(t � τ) dτ D

∫
1

�1

h(τ )es(t�τ) dτ

D

∫
1

�1

h(τ )este�sτ dτ

D est

∫
1

�1

h(τ )e�sτ dτ

︸ ︷︷ ︸

Transfer function, H(s)

D est H(s).

■ An est input decouples the convolution into two independent parts: a

part depending on est and a part depending on h(t).

EXAMPLE: Py(t)C ky(t) D u(t) D est :

but , y(t) D H(s)est, Py(t) D s H(s)est,

s H(s)est
C k H(s)est

D est

H(s) D
1

s C k
(I never integrated!)

y(t) D
est

s C k
.
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Response to a cosinusoid (revisited)

Let sD jω u(t)De jωt y(t)DH( jω)e jωt

sD� jω u(t)De� jωt y(t)DH(� jω)e� jωt

u(t)DA cos(ωt) y(t)D
A

2

[

H( jω)e jωt
C H(� jω)e� jωt

]

Now, H( jω)
4

D Me jφ

H(� jω) D Me� jφ (can be shown for h(t) real)

y(t) D
AM

2

[

e j (ωtCφ)
C e� j (ωtCφ)

]

D AM cos(ωt C φ).

■ The response of an LTI system to a sinusoid is a sinusoid! (of the

same frequency).

EXAMPLE: Frequency response of our first order system:

H(s) D
1

s C k

H( jω) D
1

jω C k

M D

jH( jω)j D
1

p

ω2
C k2

φ D

6 H( jω) D � tan�1
(ω

k

)

y(t) D
A

p

ω2
C k2

cos
(

ωt � tan�1
(ω

k

))

.

■ Can we use these results to simplify convolution and get an easier

way to understand dynamic response?
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Defining the Laplace L
�

transform

■ We have seen that if a system has an impulse response h(t), we can

compute a transfer function H(s),

H(s) D

∫
1

�1

h(t)e�st dt .

■ Since we deal with causal systems (possibly with an impulse at

t D 0), we can integrate from 0� instead of negative infinity.

H(s) D

∫
1

0�
h(t)e�st dt .

■ This is called the one-sided (uni-lateral) Laplace transform of h(t).

Laplace Transforms of Common Signals

Name Time function, f (t) Laplace tx., F(s)

Unit impulse δ(t) 1

Unit step 1(t)
1

s

Unit ramp t � 1(t)
1

s2

nth order ramp tn
� 1(t)

n!

snC1

Exponential exp(�at)1(t)
1

s C a

Ramped exponential t exp(�at)1(t)
1

(s C a)2

Sine sin(bt)1(t)
b

s2
C b2

Cosine cos(bt)1(t)
s

s2
C b2

Damped sine e�at sin(bt)1(t)
b

(s C a)2
C b2

Damped cosine e�at cos(bt)1(t)
s C a

(s C a)2
C b2

Diverging sine t sin(bt)1(t)
2bs

(s2
C b2)2

Diverging cosine t cos(bt)1(t)
s2
� b2

(s2
C b2)2
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Properties of the Laplace transform

■ Superposition: L fa f1(t)C b f2(t)g D aF1(s)C bF2(s).

■ Time delay: L f f (t � τ)g D e�sτ F(s).

■ Time scaling: L f f (at)g D
1

jaj
F

( s

a

)

.

(useful if original equations are expressed poorly in time scale. e.g.,

measuring disk-drive seek speed in hours).

■ Differentiation:

L
{
Pf (t)

}

D s F(s)� f (0�)

L
{
Rf (t)

}

D s2F(s)� s f (0�)� Pf (0�)

L
{

f (m)(t)
}

D sm F(s)� sm�1 f (0�)� . . .� f (m�1)(0�).

■ Integration: L

{∫ t

0�
f (τ ) dτ

}

D

1

s
F(s).

■ Convolution: Recall that y(t) D h(t) � u(t)

Y (s) D L fy(t)g D L fh(t) � u(t)g

D L

{∫ t

τD0�
h(τ )u(t � τ) dτ

}

D

∫
1

tD0�

∫ t

τD0�
h(τ )u(t � τ) dτ e�st dt

D

∫
1

τD0�

∫
1

tDτ�
h(τ )u(t � τ) e�st dt dτ .

t

τ

τ D t

Region of
integration

■ Multiply by e�sτesτ

Y (s) D

∫
1

τD0�
h(τ )e�sτ

∫
1

tDτ�
u(t � τ)e�s(t�τ) dt dτ .
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Let t 0 D t � τ :

Y (s) D

∫
1

τD0�
h(τ )e�sτ dτ

∫
1

t 0D0�
u(t 0)e�st 0 dt 0

Y (s) D H(s)U (s).

■ The Laplace transform “unwraps” convolution for general input

signals. Makes system easy to analyze.

■ This is the most important property of the Laplace transform. This is

why we use it. It converts differential equations into algebraic

equations that we can solve quite readily.
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3.3: The inverse Laplace transform

■ The inverse Laplace transform converts F(s) ! f (t).

■ Once we get an intuitive feel for F(s), we won’t need to do this often.

■ The main tool for ILT is partial-fraction-expansion.

Assume : F(s) D
b0sm

C b1sm�1
C � � � C bm

sn
C a1sn�1

C � � � C an

D k

∏m
iD1(s � zi)

∏n
iD1(s � pi)

➠ (zeros)

(poles)

D

c1

s � p1

C

c2

s � p2

C � � � C

cn

s � pn

if fpig distinct.

so, (s � p1)F(s) D c1 C
c2(s � p1)

s � p2

C � � � C

cn(s � p1)

s � pn

let s D p1 : c1 D (s � p1)F(s)jsDp1

ci D (s � pi)F(s)jsDpi

f (t) D

n
∑

iD1

cie
pi t1(t) since L

[

ekt1(t)
]

D

1

s � k
.

EXAMPLE: F(s) D
5

s2
C 3s C 2

D

5

(s C 1)(s C 2)
.

c1 D (s C 1)F(s)

∣
∣
∣
∣

sD�1

D

5

s C 2

∣
∣
∣
∣

sD�1

D 5

c2 D (s C 2)F(s)

∣
∣
∣
∣

sD�2

D

5

s C 1

∣
∣
∣
∣

sD�2

D �5

f (t) D (5e�t
� 5e�2t)1(t).

■ If F(s) has repeated roots, we must modify the procedure. e.g.,

repeated three times:
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F(s) D
k

(s � p1)3(s � p2) � � �

D

c1,1

s � p1

C

c1,2

(s � p1)2
C

c1,3

(s � p1)3
C

c2

s � p2

C � � �

c1,3 D (s � p1)
3F(s)

∣
∣
sDp1

c1,2 D

[
d

ds

(

(s � p1)
3F(s)

)
∣
∣
∣
∣
sDp1

c1,1 D
1

2

[
d2

ds2

(

(s � p1)
3F(s)

)
∣
∣
∣
∣
sDp1

cx,k�i D
1

i!

[
di

dsi

(

(s � pi)
k F(s)

)
∣
∣
∣
∣
sDpi

.

EXAMPLE: Find the ILT of

H(s) D
s C 2

(s C 1)2(s C 3)
D

A

s C 1
C

B

(s C 1)2
C

C

s C 3
.

■ We start with B,

B D

s C 2

s C 3

∣
∣
∣
∣
sD�1

D

1

2
.

■ Next, we find A,

A D

[
d

ds

(
s C 2

s C 3

)∣
∣
∣
∣
sD�1

D

[
d

ds
(s C 2)(s C 3)�1

∣
∣
∣
∣
sD�1

D

[

(s C 2)(�1)(s C 3)�2
C (s C 3)�1

∣
∣
sD�1

D

[

�

s C 2

(s C 3)2
C

1

s C 3

∣
∣
∣
∣
sD�1

D �

1

4
C

1

2
D

1

4
.
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■ Lastly, we find C ,

C D

s C 2

(s C 1)2

∣
∣
∣
∣
sD�3

D �

1

4
.

■ Therefore, the inverse Laplace transform we are looking for is

h(t) D

[
1

2
te�t

C

1

4
e�t

�

1

4
e�3t

]

1(t).

EXAMPLE: Find ILT of
s C 3

(s C 1)(s C 2)2
.

■ ans: f (t) D (2e�t
� 2e�2t

� te�2t
︸︷︷︸

from repeated root.

)1(t).

■ Note that this is quite tedious, but MATLAB can help.

■ Try MATLAB with two examples; first, F(s) D
5

s2
C 3s C 2

.

Example 1. Example 2.

>> Fnum = [0 0 5]; >> Fnum = [0 0 1 3];

>> Fden = [1 3 2]; >> Fden = conv([1 1],conv([1 2],[1 2]));

[r,p,k] = residue(Fnum,Fden); [r,p,k] = residue(Fnum,Fden);

r = -5 r = -2

5 -1

p = -2 2

-1 p = -2

k = [] -2

-1

k = []

■ When you use “residue” and get repeated roots, BE SURE to type

“help residue” to correctly interpret the result.
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Using the Laplace transform to solve problems

■ We can use the Laplace transform to solve both homogeneous and

forced differential equations.

EXAMPLE: Ry(t)C y(t) D 0, y(0�) D α, Py(0�) D β.

■ Take Laplace transforms, term by term:

s2Y (s)� αs � β C Y (s) D 0

Y (s)(s2
C 1) D αs C β

Y (s) D
αs C β

s2
C 1

D

αs

s2
C 1

C

β

s2
C 1

.

✬

✫

✩

✪

a

s2
C a2

() sin(at)1(t)

s

s2
C a2

() cos(at)1(t).

■ From tables, y(t) D [α cos(t)C β sin(t)]1(t).

■ If initial conditions are zero, things are very simple.

EXAMPLE:

Ry(t)C5 Py(t)C4y(t) D u(t), y(0�) D 0, Py(0�) D 0, u(t) D 2e�2t1(t).

■ Start with:

s2Y (s)C 5sY (s)C 4Y (s) D
2

s C 2

■ Rearrange:

Y (s) D
2

(s C 2)(s C 1)(s C 4)

D

�1

s C 2
C

2/3

s C 1
C

1/3

s C 4
.

✬

✫

✩

✪

H(s) () h(t)

H(s C a) () e�ath(t).

■ From tables, y(t) D

[

�e�2t
C

2

3
e�t

C

1

3
e�4t

]

1(t).
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3.4: Time response versus pole locations

■ If we wish to know how a system responds to some input (for

example, an impulse response, or a step response), it seems like we

need to do the following:

1. Find the Laplace transform U (s) of the input u(t),

2. Find the Laplace transform of the output Y (s) D H(s)U (s),

3. Find the time response by taking the inverse Laplace transform of

Y (s). That is, y(t) D L
�1(Y (s)).

■ This is true if we want a precise, quantitative answer.

■ But, if we’re interested only in a qualitative answer, we can learn a lot

simply by looking at the pole locations of the transfer function.

■ If we can represent H(s) D numH(s)/denH(s) and

U (s) D numU (s)/denU (s), then we have

Y (s) D
numH(s)numU (s)

denH(s)denU(s)

D

∑

k

rk

s C pk

,

where “pole” s D �pk is a root of either denH(s) or denU (s).

■ So, some of the system’s response is due to the poles of the input

signal, and some is due to the poles of the plant.

■ Here, we’re interested in the contribution due to the poles of the plant.

� Neglecting the residues rk, which simply scale the output by some

fixed amount, we’re interested in “what does an output of the type
1

s C pk

look like?”
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� That is, the poles qualitatively determine the behavior of the

system; zeros (equivalently, residues) quantify this relationship.

■ Note that the poles pk may be real, or they may occur in

complex-conjugate pairs.

■ So, in the next sections, we look at the time responses of real poles

and of complex-conjugate poles.

Time response due to a real pole

■ Consider a transfer function having a single real pole:

H(s) D
1

s C σ
➠ h(t) D e�σ t1(t).

■ If σ > 0, pole is at s < 0, STABLE i.e., impulse response decays, and

any bounded input produces bounded output.

■ If σ < 0, pole is at s > 0, UNSTABLE.

■ σ is “time constant” factor: τ D 1/σ .

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

impulse([0 1],[1 1]);

Time (sec � τ )
t D τ

 �

1

e

e�σ t

h
(t

)

�

�

�

D

�!

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

step([0 1],[1 1]);

Time (sec � τ )
t D τ

 �

�

y
(t

)

�

K

K (1� e�t/τ )
System response. K D dc gain

Response to initial condition
�! 0.
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Time response due to complex-conjugate poles

■ Now, consider a second-order transfer function having

complex-conjugate poles

H(s) D
b0

s2
C a1s C a2

D K
ω2

n

s2
C 2ζωns C ω2

n︸ ︷︷ ︸

standard form

.

ζ D damping ratio.

ωn D natural frequency or undamped frequency.

h(t) D
ωn

√

1� ζ 2
e�σ t (sin(ωdt)) 1(t),

where, σ D ζωn,

ωd D ωn

√

1 � ζ 2
D damped frequency.

θ D sin�1(ζ )

I(s)

R(s)

ωd
σ

ωn

ζ D 0.707

I(s)

R(s)

45Æ

ζ D 0.5

I(s)

R(s)

30Æ

ζ D 0.3

I(s)

R(s)

17.5Æ
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0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

e�σ t

�e�σ t

Time (sec)

h
(t

)

Impulse Response

Envelope of sinusoid decays as e�σ t

0 2 4 6 8 10 12

-1

-0.5

0

0.5

1
ζ D 0

0.2

0.4

0.6

0.8ζ D 1

ωnt

y
(t

)

Impulse Responses of 2nd-Order Systems

0 2 4 6 8 10 12

0

0.5

1

1.5

2
ζ D 0

0.2

0.4

0.6

D

0.8

1.0

ωnt

y
(t

)

Step Responses of 2nd-Order Systems

■ Low damping, ζ � 0, oscillatory; High damping, ζ � 1, no oscillations.

I(s)

R(s)

Impulse responses vs. pole locations

I(s)

R(s)

Step responses vs. pole locations

■ 0 < ζ < 1 underdamped.

■ ζ D 1 critically damped, ζ > 1 over-damped.
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3.5: Time-domain specifications

■ We have seen impulse and step responses for first- and second-order

systems.

■ Our control problem may be to specify exactly what the response

SHOULD be.

■ Usually expressed in terms of the step response.

0.1

0.9
1

ttr

Mptp

ts

■ tr = Rise time = time to reach vicinity of new set point.

■ ts = Settling time = time for transients to decay (to 5 %, 2 %, 1 %).

■ Mp = Percent overshoot.

■ tp = Time to peak.

Rise Time

■ All step responses rise in roughly the same amount of time (see

pg. 3–17.) Take ζ D 0.5 to be average.

➠ time from 0.1 to 0.9 is approximately ωntr D 1.8:

tr �
1.8

ωn

.
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■ We could make this more accurate, but note:

� Only valid for 2nd-order systems with no zeros.

� Use this as approximate design “rule of thumb” and iterate design

until spec. is met.

Peak Time and Overshoot

■ Step response can be found from ILT of H(s)/s.

y(t) D 1� e�σ t

(

cos(ωdt)C
σ

ωd

sin(ωdt)

)

,

ωd D ωn

√

1 � ζ 2, σ D ζωn.

■ Peak occurs when Py(t) D 0

Py(t) D σ e�σ t

(

cos(ωdt)C
σ

ωd

sin(ωdt)

)

� e�σ t (�ωd sin(ωdt)C σ cos(ωdt))

D e�σ t

(
σ 2

ωd

sin(ωdt)C ωd sin(ωdt)

)

D 0.

■ So,

ωd tp D π,

tp D
π

ωd

D

π

ωn

√

1 � ζ 2
.

■ Mp D e�ζπ/
p

1�ζ 2

� 100.

■ (common values: Mp D 16% for

ζ D 0.5; Mp D 5% for ζ D 0.7). 0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

60

70

80

90

100

ζ

M
p
,

%
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Settling Time

■ Determined mostly by decaying exponential

e�ωnζ ts
D ǫ . . . ǫ D 0.01, 0.02, or 0.05

EXAMPLE:

ǫ D 0.01

e�ωnζ ts
D 0.01

ωnζ ts D 4.6

ts D
4.6

ζωn

D

4.6

σ

ǫ ts

0.01 ts D 4.6/σ

0.02 ts D 3.9/σ

0.05 ts D 3.0/σ

Design synthesis

■ Specifications on tr , ts, Mp determine pole locations.

■ ωn � 1.8/tr .

■ ζ � fn(Mp). (read off of ζ versus Mp graph on page 3–19)

■ σ � 4.6/ts. (for example—settling to 1%)

I(s)

R(s)

ωn

I(s)

R(s)
D

sin�1 ζ

I(s)

R(s)

σ

I(s)

R(s)

EXAMPLE: Converting specs. to s-plane

■ Specs: tr � 0.6, Mp � 10%, ts � 3 sec. at 1%
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■ ωn � 1.8/tr D 3.0 rad/sec.

■ From graph of Mp versus ζ, ζ � 0.6.

■ σ � 4.6/3 D 1.5 sec.

-5 -4 -3 -2 -1 0 1

-3

-2

-1

0

1

2

3

R(s)

I
(s

)

EXAMPLE: Designing motor compensator

■ Suppose a servo-motor system for a pen-plotter has transfer function

0.5Ka

s2
C 2s C 0.5Ka

D

ω2
n

s2
C 2ζωns C ω2

n

.

■ Only one adjustable parameter Ka, so can choose only one spec: tr ,

ts or Mp ➠ Allow NO overshoot.

■ Mp D 0, ζ D 1.

■ From transfer function: 2 D 2ζωn ➠ ωn D 1.

■ ω2
n D 12

D 0.5Ka, Ka D 2.0

■ Note: ts D 4.6 seconds. We will need a better controller than this for a

pen plotter!
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3.6: Time response vs. pole locations: Higher order systems

■ We have looked at first-order and second-order systems without

zeros, and with unity gain.

Non-unity gain

■ If we multiply by K , the dc gain is K . tr , ts, Mp, tp are not affected.

Add a zero to a second-order system

H1(s) =
2

(s C 1)(s C 2)
H2(s) =

2(s C 1.1)

1.1(s C 1)(s C 2)

=
2

s C 1
�

2

s C 2
=

2

1.1

(
0.1

s C 1
C

0.9

s C 2

)

=
0.18

s C 1
C

1.64

s C 2

■ Same dc gain (at s D 0).

■ Coefficient of (s C 1) pole GREATLY reduced.

■ General conclusion: a zero “near” a pole tends to cancel the effect of

that pole.

■ How about transient response?

H(s) D

s
αζωn

C 1

(s/ωn)2
C 2ζ s/ωn C 1

.

� Zero at s D �ασ (since σ D ζωn).

� Poles at R(s) D �σ .

■ Large α, zero far from poles ➠ no effect.

■ α � 1, large effect.
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■ Notice that the overshoot goes up as α ! 0.

0 2 4 6 8 10

0

0.5

1

1.5

2

α D 1
2
4
100

ωnt

S
te

p
R

e
s
p
o
n
s
e

2nd-order system with zero

0 2 4 6 8 10

0

0.5

1

1.5

2

ζ D 0.3

0.5

0.7

α

M
p

Overshoot versus normalized zero loc.

■ A little more analysis; set ωn D 1

H(s) D

s
αζ
C 1

s2
C 2ζ s C 1

D

1

s2
C 2ζ s C 1

C

(
1

αζ

)
s

s2
C 2ζ s C 1

D Ho(s)C Hd(s).

■ Ho(s) is the original response, without the zero.

■ Hd(s) is the added term due to the zero. Notice that

Hd(s) D
1

αζ
s Ho(s).

The time response is a scaled version of the derivative of the time

response of Ho(s).

■ If any of the zeros in RHP (α < 0), system is nonminimum phase.
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0 2 4 6 8 10

-0.5

0

0.5

1

1.5

2

H (s)

Ho(s)

Hd(s)

Time (sec)

y
(t

)

2nd-order min-phase step resp.

0 2 4 6 8 10

-1.5

-1

-0.5

0

0.5

1

1.5

Ho(s)

H (s)

Hd(s)

Time (sec)

y
(t

)

2nd-order nonmin-phase step resp.

Add a pole to a second order system

H(s) D
1

(
s

αζωn
C 1

)

[(s/ωn)2
C 2ζ s/ωn C 1]

.

■ Original poles at R(s) D �σ D �ζωn.

■ New pole at s D �αζωn.

■ Major effect is an increase in rise time.
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2nd-order system with pole
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ζ D 1.0

0.7

0.5

α

ω
n
t r

Norm. rise time vs. norm. pole loc.

Summary of higher-order approximations

■ Extra zero in LHP will increase overshoot if the zero is within a factor

of � 4 from the real part of complex poles.
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■ Extra zero in RHP depresses overshoot, and may cause step

response to start in wrong direction. DELAY .

■ Extra pole in LHP increases rise-time if extra pole is within a factor of

� 4 from the real part of complex poles.

Unstable
regionDominantInsignificant

I(s)

R(s)

■ MATLAB ‘step’ and ‘impulse’ commands can plot higher order system

responses.

■ Since a model is an approximation of a true system, it may be all right

to reduce the order of the system to a first or second order system. If

higher order poles and zeros are a factor of 5 or 10 time farther from

the imaginary axis.

� Analysis and design much easier.

� Numerical accuracy of simulations better for low-order models.

� 1st- and 2nd-order models provide us with great intuition into how

the system works.

� May be just as accurate as high-order model, since high-order

model itself may be inaccurate.
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3.7: Changing dynamic response

■ Topic of the rest of the course.

■ Important tool: block diagram manipulation.

Block-diagram manipulation

■ We have already seen block diagrams (see pg. 1–4).

■ Shows information/energy flow in a system, and when used with

Laplace transforms, can simplify complex system dynamics.

■ Four BASIC configurations:

H (s) Y (s)U(s) Y (s) D H (s)U(s)

H1(s) H2(s) Y (s)U(s) Y (s) D [H2(s)H1(s)] U(s)

H1(s)

H2(s)

Y (s)U(s) Y (s) D [H1(s)C H2(s)] U(s)

H1(s)

H2(s)

Y (s)R(s)
U1(s)

Y2(s) U2(s)

U1(s) D R(s)� Y2(s)

Y2(s) D H2(s)H1(s)U1(s)

so, U1(s) D R(s)� H2(s)H1(s)U1(s)

D

R(s)

1C H2(s)H1(s)

Y (s) D H1(s)U1(s)

D

H1(s)

1C H2(s)H1(s)
R(s)
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■ Alternate representation

H (s)

H1(s)

H1(s)

H1(s) H2(s)

H2(s)

�H2(s)

Y (s)

Y (s)

Y (s)

Y (s)

U(s)

U(s)

U(s)

R(s)

EXAMPLE: Recall dc generator dynamics from page 2–19
R f Ra Lai f (t) ia(t)

e f (t) L f eg(t) Zlea(t)

︸ ︷︷ ︸

Field
circuit

︸ ︷︷ ︸

Rotor
circuit

︸ ︷︷ ︸

Load
circuit

e f (t) ea(t)
i f (t) eg(t) ia(t)Field

circuit
Kg

Rotor
circuit

Zl

■ Compute the transfer functions of the four blocks.✬

✫

✩

✪

e f (t) D R f i f (t)C L f

d

dt
i f (t)

E f (s) D R f I f (s)C L f s I f (s)

I f (s)

E f (s)
D

1

R f C L f s
.

✬

✫

✩

✪

eg(t) D Kgi f (t)

Eg(s) D Kg I f (s)

Eg(s)

I f (s)
D Kg.
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✬

✫

✩

✪

ea(t) D ia(t)Zl

Ea(s) D Zl Ia(s)

Ea(s)

Ia(s)
D Zl.

✬

✫

✩

✪

eg(t) D Raia(t)C La

d

dt
ia(t)C ea(t)

Eg(s) D Ra Ia(s)C Las Ia(s)C Ea(s)

D (Ra C Las C Zl) Ia(s)

Ia(s)

Eg(s)
D

1

Las C Ra C Zl

.

■ Put everything together.

Ea(s)

E f (s)
D

Ea(s)

Ia(s)

Ia(s)

Eg(s)

Eg(s)

I f (s)

I f (s)

E f (s)

D

Kg Zl
(

L f s C R f

)

(Las C Ra C Zl)
.

Block-diagram algebra

()

()

()

H (s)

H (s)

H (s)H (s)

H (s)

1

H (s)

H1(s) H1(s)

H2(s)

H2(s)
1

H2(s)

Y (s)Y (s)

Y (s) Y (s)

Y1(s) Y1(s)

Y2(s) Y2(s)

U(s) U(s)

U1(s)U1(s)

U2(s)

U2(s)

R(s) R(s)

“Unity Feedback”
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EXAMPLE: Simplify:
replacements

H1(s) H2(s)

H3(s)

H4(s)

H5(s)

H6(s)

Y (s)R(s)

H1(s)

1� H1(s)H3(s)
H2(s)

H4(s)

H5(s)

H6(s)

Y (s)R(s)

H1(s)

1� H1(s)H3(s)
H2(s)

H4(s)

H5(s)

H6(s)

H2(s)

Y (s)R(s)

︸ ︷︷ ︸
(

H1(s)H2(s)
1�H1(s)H3(s)

)

(

1C
H1(s)H2(s)H4(s)

1�H1(s)H3(s)

)

︸ ︷︷ ︸

H5(s)C
H6(s)

H2(s)

H1(s)H2(s)H5(s)C H1(s)H6(s)

1� H1(s)H3(s)C H1(s)H2(s)H4(s)
R(s) Y (s)
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