
ECE4560
DIGITAL CONTROL LABORATORY

Fall 2002

Discrete-time control systems will be designed and tested using microcomputers, compensators, A/D and D/A con-
verter analog computers. Experiments in the control of discrete and analog systems will be performed. Coreq.,
ECE4540.

Instructor: TBD Office: TBD Phone: TBD email: TBD
Course web-page: http://mocha-java.uccs.edu/ECE4560/

Office Hours: TBD

Summary: This course deals with practical aspects of control engineering. It is intended as a companion course for
ECE4540 (Digital Control Systems), and serves to augment and demonstrate concepts presented in the classroom.

Matlab/Simulink: You will use Matlab and Simulink extensively. Prior familiarity with Matlab and Simulink
is assumed. You are not required to purchase these packages. Matlab and Simulink run on the control-systems lab
computers and on the ECE multimedia room computers.

Grading: 10% of your course grade will depend on your prelab assignments and 90% of your course grade will
depend on your lab reports. No lab report will be given a grade better than “F” until you turn in an approved prelab
assignment for that lab. See further note regarding grading on the back of this page.

Lab Syllabus

Laboratory Orientation

1. Discrete-time simulation with Simulink.

(Free lab period to write up formal report)

Unit 1: Design by Emulation

2. Time-domain controller emulation.

3. Frequency-domain controller emulation.

(Free lab period to write up formal report)

Unit 2: Digital Effects

4. Sampling, aliasing, zero-order hold.

5. Discrete-time plant modeling.

6. Filter structure and finite-precision effects.

(Free lab period to write up formal report)

Unit 3: Transfer Function Controller Design

7. Frequency-response controller design.

8. Numeric optimal PID controller design.

9. Ragazzini’s direct control design method.

(Free lab period to write up formal report)

Unit 4: State-Space Controller Design

10. State-feedback controller design.

11. State estimation and control design.

(Formal report due before end of exam week)



Work Load: This is an aggressive lab course requiring weekly assignments. On average, expect to spend 3 to 4.5 hours
per week outside of the lab preparing for the labs and completing lab writeups. This is in accord with UCCS policy relating
credit hours for a laboratory course to student workload. Some students will find that more time is required, while others will
find that less time is required.

Grading: Due to space and equipment limitations, the labs must be performed in groups of two or three students per group.
Your grade will be largely determined by the quality of your report. The reports will be graded based on organization, technical
accuracy, neatness, grammar and spelling. If a lab-group submits a single report, then each student will receive the same grade
for the lab report. If each student in a lab-group submits his or her own report, each student will receive an individual grade.

Lab Reports: The Department requires formal lab reports which must satisfy the following format rules:

1. Title page: This must include a title, group member names, course and section name and date.

2. Introduction: Explain the background and objective of the lab indicating requirements and desired results.

3. Discussion: Discuss the underlying applicable theory and concepts that support the measurements. Indicate and discuss
the measurement set-up and equipment used.

4. Measurement data and/or Results: Present measurement results in tabular, graphical or numeric form. Present results
from required lab exercises.

5. Discussion of Measurements: Discuss measured data in context of comparison to expectation, accuracy, difficulties, etc.

6. Summary and Conclusions: Discuss findings, explain errors and unexpected results; summarize and indicate conclusions.

Further requirements on the lab report are:

1. Correct spelling, grammar and punctuation is required.

2. Report must be typed; figures, drawings and equations may be handwritten.

3. Format of references must conform to IEEE (transactions) standards.

Prelab Assignments: Before you enter the laboratory each week, you are expected to thoroughly read and understand
the corresponding lab writeup in this lab reader. Each lab has a prelab assignment. This assignment must be completed and
turned in to the lab instructor before you will be permitted to start the lab. Each of your prelab assignments must contain:

• Answers to the specific questions given in the “Prelab Assignment” portion of the lab reader for that lab,

• A paragraph describing what you are supposed to do during the lab,

• A paragraph describing expected results.

A portion of your course grade will be assigned based on your prelab assignments. Furthermore, no grade better than an “F” is
possible for any lab report until an approved prelab assignment has been turned in for that lab.

Missed Labs: Attendance is your responsibility. Missed labs will count as ZERO without a physician’s documentation
of an illness, or other appropriate documentation of an emergency beyond your control and requiring your absence.

Please Note: The instructor reserves the right to change the syllabus and to add or delete lab assignments depending on
circumstances. Changes will be announced ahead of time, and handouts will be given out at least one class ahead of the lab.

The Control-Systems Lab and the Lab Reader This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 9981009. Any opinions, findings, and conclusions or recommendations
expressed in this material are thos of the author and do not necessarily reflect the views of the National Science
Foundation.
The lab reader has been composed using the LYX document processing system and typeset with LATEX2ε. All original diagrams
have been created using either xfig or Matlab. Screen shots were made using xv.

The lab reader has been prepared by Dr. Gregory Plett; however, much has been taken from the manual for the Model 730
Magnetic Levitation unit by Educational Control Products (ECP), http://www.ecpsystems.com, and the manual for the
Real Time Linux Target (RTLT) by Quality Real Time Systems (QRTS), http://www.qrts.com. Text and diagrams have
been copied from these manuals. Scanned photos from the ECP web site have also been included. All are used with permission
of ECP and QRTS.



ECE4560: Digital Control Laboratory. 1–1

Discrete-Time Simulation with Simulink

1.1 INTRODUCTION

A fundamental aspect of digital control systems is that they operate in discrete time rather than continuous time. In
this lab period you will discover how to implement and simulate discrete-time systems in Simulink. This will be
important as the semester progresses since you will use Simulink to control the Lab’s Magnetic Levitation (MagLev)
systems using digital control methods.

1.2 THIS LAB IS. . .

During this lab period, two issues will be addressed:

• Orientation: A quick overview of the syllabus and expectations for lab reports.

• Discrete-Time Simulation: How to use Simulink to perform discrete-time simulation.

1.3 ORIENTATION

1.3.1 Prerequisites

The prerequisite for this lab is ECE4510: Feedback Control Systems. This is implied by the corequisite ECE4540:
Digital Control Systems. Specifically, the ECE4530: Feedback Control Laboratory is not a prerequisite for this
lab course. However, if you have not taken ECE4530, you will be at a disadvantage. Please read (very carefully)
Apps. A and B. A thorough understanding of the material in App. B is critical.

1.3.2 The Lab Reader

This lab reader1 contains eleven labs. The first is a Simulink-only lab. The remaining labs are divided up into four
“units”. The first unit focuses on digital design via emulating a continuous-time design; the second unit addresses
digital effects not present in continuous-time design; the third unit concentrates on control design using transfer-
function methods; and the fourth unit looks at state-space models and design. Each lab has a detailed discussion in
this lab reader, and a consistent format is used throughout:

Introduction: A short introduction to the lab experiment.

This Lab Is. . . : A summary of the main points of the lab.

1The reader has been entered using the LYX document processing systemand typeset with LATEX2ε on a Pentium class computer running
the Linux operating system. All original diagrams have been created using either xfig or Matlab. Screen shots were made using xv.

The lab reader has been prepared by Dr. Gregory Plett; however, much has been taken from the manual for the Model 730 Magnetic
Levitation unit by Educational Control Products (ECP), http://www.ecpsystems.com, and the manual for the Real Time Linux Target
(RTLT) by Quality Real Time Systems (QRTS), http://www.qrts.com. Text and diagrams have been copied from these manuals.
Scanned photos from the ECP web site have also been included. All are used with permission of ECP and QRTS.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs



ECE4560, Discrete-Time Simulation with Simulink 1–2

Background: Theory and practical information required to perform the lab.

Prelab assignment: An assignment which must be completed and turned in before you will be permitted to start
the lab.

Laboratory Experiment: The experiment to be performed during the lab period.

Assignment: Items which must be included in the formal lab writeup.

1.3.3 Prelab Assignments

Before you enter the laboratory each week, you are expected to thoroughly read and understand the corresponding
lab writeup in this lab reader. Each lab has a prelab assignment. This assignment must be completed and turned in
to the lab instructor before you will be permitted to start the lab. Each of your prelab assignments must contain:

• Answers to the specific questions given in the “Prelab Assignment” portion of the lab reader for that lab,

• A paragraph describing what you are supposed to do during the lab,

• A paragraph describing expected results.

A portion of your course grade will be assigned based on your prelab assignments. Furthermore, no grade better
than an “F” is possible for any lab report until an approved prelab assignment has been turned in for that lab.

1.3.4 Lab Reports

A syllabus of lab topics is listed on the front page of this lab reader. You will see that the semester is divided into
four main units which each contain a number of labs. The report for Lab 1 is due at the beginning of lab period 2; the
reports for Labs 2 and 3 are due at the beginning of lab period 4; the reports for Labs 4–6 are due at the beginning of
lab period 7; the reports for Labs 7–9 are due at the beginning of lab period 10; the reports for Labs 10–11 are due
before the end of finals week.
The Department requires formal lab reports. The format for formal lab reports must comply to the following:

1. Title page: This must include a title, group member names, course and section name and date.

2. Introduction: Explain the background and objective of the lab indicating requirements and desired results.

3. Discussion: Discuss the underlying applicable theory and concepts that support the measurements. Indicate
and discuss the measurement set-up and equipment used.

4. Measurement data and/or Results: Present measurement results in tabular, graphical or numeric form. Present
results from required lab exercises.

5. Discussion of Measurements: Discuss the measurement data in context of comparison to expectation, accu-
racy, difficulties, etc.

6. Summary and Conclusions: Discuss findings, explain errors and unexpected results and summarize and indi-
cate conclusions.

Further requirements on the lab report are:

1. Correct spelling, grammar and punctuation is required.

2. Report must be typed; figures, drawings and equations may be handwritten.

3. Format of references must conform to IEEE (transactions) standards.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs



ECE4560, Discrete-Time Simulation with Simulink 1–3

1.4 BACKGROUND

Control systems implemented on a digital computer are called digital control systems (tricky, huh?). Digital control
systems differ from their analog counterparts in two important ways.

1. Digital systems operate in discrete time, not continuous time. That is, control computations do not occur
continuously (as they do using op-amps for analog systems), but occur at discrete instants in time. These
instants are usually regular periodic times, separated by the sampling period T [sec]. The sampling operation
introduces artifacts into the signal which are known as signal aliases. It also introduces delay into the closed-
loop system which tends to destabilize the control.

2. Digital systems do not use infinite-precision mathematics. To store the value of a signal—such as a control
signal—in computer memory, the value must be quantized. This means that the value is rounded to the nearest
number which can be stored. The coefficients of the transfer function of the controller must also be quantized.
These are two separate issues: signal quantization and coefficient quantization.

In this lab period you will implement and simulate a discrete-time system in Simulink.

1.4.1 Notation for Sampling

Consider a continuous-time signal x(t). If we look at the signal at discrete points in time that are separated by a
constant sampling period T , then we have the set of values x(kT ) where k is an integer. To simplify notation, we say
that x[k] = x(kT ) where x[k] is a discrete-time signal (denoted using square brackets) and x(t) is a continuous-time
signal (denoted by parentheses). When you read x[k] you should understand that some sampling period T is implied,
which must be somehow specified elsewhere.

1.4.2 Linear Constant Coefficient Difference Equations

The continuous-time systems you have seen are defined by Linear Constant Coefficient Ordinary Differential Equa-
tions (LCCODEs). Linear, time invariant, lumped discrete-time systems may be defined by Linear Constant Coeffi-
cient Difference Equations (LCCDEs). A controller would be implemented with a LCCDE such as:

n
∑

i=0

ai u[k − i] =
m
∑

i=0

bi e[k − i],

with input e[k] and output u[k] and ai and bi which determine the transfer function of the controller.
An example discrete-time system is a discrete-time integrator. If the sampling period is T , then the output of an
integrator may be approximated by (rectangular rule)

y[k] = T
k
∑

i=0

x[i],

where y[k] is the output of the integral and x[k] is the input signal. Note: y[k − 1] = T
∑k−1

i=0 x[i] so we can write2

y[k] = y[k − 1]+ T x[k].

1.4.3 Discrete-Time Simulation

When we consider implementing the above equation, we find that we need two quantities: x[k] and y[k − 1]. The
input to the system is x[k], and y[k − 1] is a delayed version of the system’s output. Therefore, we can implement
the above equation with a feedback loop which has a delay in it.

2Notice that this is the same as y[k]− y[k − 1] = T x[k], which is of the LCCDE form. However, the form given in the main text is more
useful for us.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs



ECE4560, Discrete-Time Simulation with Simulink 1–4

Figure 1.1 Simulink’s discrete-time library.

Simulink has a number of blocks which will aid you in making discrete-time simulations. These are part of the
Discrete-Time Simulink library, and are shown in Fig. 1.1. The two blocks of interest to us now are the “Zero-Order
Hold” and “Unit Delay” blocks. Over the course of the semester, you will learn to use many of the other blocks as
well. The reason for the label 1/z on the unit-delay will also become apparent.
To continue with the integrator example, consider the block diagram in Fig. 3.1 on page 3–2. A source (in this case
a sine wave) generates an input signal x(t). This signal must be sampled to make x[k]. The Simulink block which
does this function is the “Zero-Order Hold” block. The x[k] signal is scaled by T to produce T x[k]. The output of
the integrator is y[k] which is computed as x[k]+ y[k − 1]. The final remaining signal y[k − 1] is computed from
y[k] by passing it through a “Unit Delay” block.
The zero-order hold, amplifier and unit delay blocks require the sampling period T . You will find that it is best to
enter these as symbolic T and define the value of T in the Matlab workspace. This allows easy and consistent change
of sampling rate.

Zero−Order
Hold z

1

Unit Delay

Sine Wave Scope

T

Gain

x(t) x[k] y[k]

y[k−1]

Tx[k]

Figure 1.2 Discrete-time integrator implemented in Simulink.

1.5 PRELAB ASSIGNMENT

There are no prelab questions for this lab. You are still expected to submit a prelab containing a paragraph describing
what you are supposed to do during the lab, and a paragraph describing expected results.

1.6 LABORATORY EXPERIMENT

A “leaky” integrator is defined by the difference equation y[k] = ay[k − 1]+ T x[k], where usually 0 ≤ a < 1. The
system is stable, however, for −1 < a < 1.

1. Implement a leaky integrator in Simulink. Plot the step response of the system for a number of values of
0 ≤ a ≤ 1. Also plot the step response of the system for a number of values −1 ≤ a < 0. Use T = 0.1 sec.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs
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2. Plot the response of the system with the input being a sine wave and a = 0.9. Use a sine wave of frequency
1 rad/sec. Use sampling periods T = 0.1, 0.5, 1 sec.

1.7 ASSIGNMENT

Include your Simulink diagram and plots in your report. Comment on the shapes of the output curves. What
prominent features do you see? How do you explain them? Your “leaky integrator” also has another name—suggest
what kind of discrete-time filter it is implementing (Hint: It is either a low-pass, band-pass or high-pass filter).
Note: You have the next lab period free; the report for Lab 1 is due at the beginning of the following lab period.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs
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Unit 1

Design by Emulation

In the laboratory this semester, there are four major groups of labs. This unit is the first such group and it focuses on
digital control design via “emulating” an analog control design for the same plant. In:

• Lab 2 you will use time-domain methods to transform a continuous-time control design to a discrete-time
control design; in

• Lab 3 you will use frequency-domain methods to transform a continuous-time control design to a discrete-time
control design.



(mostly blank)



ECE4560: Digital Control Laboratory. 2–1

Time-Domain Controller Emulation

2.1 INTRODUCTION

Two different approaches may be taken to digital controller design. The first, which you investigate during the next
two lab periods, emulates (or simulates) a known analog control design in discrete time. The second, which you will
investigate the rest of the semester, uses direct digital design methods.

2.2 THIS LAB IS. . .

• An introduction to emulation by simulating an LCCODE with an LCCDE.

• Your first discrete-time control system.

2.3 BACKGROUND

Analog control design techniques for single-input single-output (SISO) dynamic systems result in controller transfer
functions D(s). The input to the controller is the tracking error e(t) = r(t)− y(t) and the output of the controller is
the control effort u(t). Therefore, we can write

D(s) = U (s)
E(s)

.

We are interested in mimicking the performance of D(s) in discrete-time. That is, we would like to produce an
output approximating u(t). So, rearrange the above equation:

U (s) = D(s)E(s).

There are two ways to get a time-domain result from this equation:

1. We could take the inverse-Laplace transform of U (s) to find u(t)

u(t) = L−1 [D(s)E(s)] ,

but that would require a priori knowledge of E(s) to compute u(t). We do not know what E(s) will be since
it is influenced by disturbance and plant modeling errors which are unknown.

2. We could take the inverse-Laplace transform of the above equation on a term-by-term basis to come up with
an LCCODE for the controller. This exactly reverses the steps normally taken to convert the dynamics of a
plant to its transfer function. We then end up with

n
∑

k=0

ak
dku(t)
du(t)k

=
m
∑

k=0

bk
dke(t)
de(t)k

.

The second form is useful. It gives the dynamic relationship between e(t) and u(t) regardless of what the time-
history of each signal might be.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs



ECE4560, Time-Domain Controller Emulation 2–2

2.3.1 Approximating a derivative

A derivative operator may be approximated in discrete time using the “backward rectangular rule”

ẋ(t)
4= lim

δt→0

δx
δt
= lim

δt→0

x(t)− x(t − δt)
δt

.

If the sampling rate T of the discrete-time system is small, we may approximate δt ≈ T

ẋ(kT ) ≈ x(kT )− x((k − 1)T )
T

, or ẋ[k] ≈ x[k]− x[k − 1]
T

.

We can perform the same analysis for second- and higher-order derivatives. For example

ẍ(t)
4= lim

δt→0

δ ẋ
δt
= lim

δt→0

ẋ(t)− ẋ(t − δt)
δt

ẍ(kT ) ≈ ẋ(kT )− ẋ((k − 1)T )
T

or ẍ[k] ≈ ẋ[k]− ẋ[k − 1]
T

.

Apply the rule once again to ẋ[k] and ẋ[k − 1]

ẍ[k] ≈
x[k]−x[k−1]

T − x[k−1]−x[k−2]
T

T

= x[k]− 2x[k − 1]+ x[k − 2]
T 2

.

2.3.2 Putting the pieces together

To see how to use these two facts to convert an analog controller into a digital controller we will examine a concrete
example. Consider a lead or lag controller

D(s) = K
s + a
s + b

.

Rearranging, and noticing that D(s) = U (s)/E(s), gives us the relationship
(s + b)U (s) = K (s + a)E(s).

Convert to an LCCODE via sU (s) 7→ u̇(t), U (s) 7→ u(t), and so forth; we have
u̇(t)+ bu(t) = K ė(t)+ K ae(t).

Replacing u(t) 7→ u[k], u̇(t) 7→ (u[k]− u[k − 1])/T and so forth
u[k]− u[k − 1]

T
+ bu[k] = K

e[k]− e[k − 1]
T

+ K ae[k]

u[k]− u[k − 1]+ bT u[k] = K e[k]− K e[k − 1]+ K T ae[k]

u[k] = u[k − 1]+ K ((1+ aT )e[k]− e[k − 1])
1+ bT

.

This equation says that the control signal at time index k may be computed using the previous control value u[k−1],
the current error signal e[k] and the previous error signal e[k − 1].

2.3.3 Implementing the difference equation

The above difference equation may be easily implemented in Simulink. In Fig. 2.1 on page 2–3, a subsystem for
implementing this controller is drawn. The input port is e[k], the output port is u[k], and the 1/z blocks are unit-
delays.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs
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1
u[k]

z

1

z

1

1+a*T 1/(1+b*T)

K1
e[k]

u[k−1]

K*e[k−1]

Figure 2.1 Simulink subsystem for implementing a lead or lag controller.

2.4 PRELAB ASSIGNMENT

In this lab you will control the MagLev device, configured with a single disk (lower position). You will control the
position of the disk around an equilibrium position of 2.5 cm. The steady-state dc value to achieve the equilibrium
height may be calculated as

u1o = 100mga(y1o + b)4,

where m = 0.12 kg, g = 9.8 m/sec2, a and b are the actuator characteristics of your MagLev (consult App. B), and
the factor of 100 is to convert m to cm so that the units work out with u1o in V .
The linearized transfer function of the system may be found to be (again, consult App. B)

G(s) = ku11

ms2 + mβs + k11
,

where the friction coefficient is approximately 5 sec−1. The ku11 and k11 coefficients may be calculated for the given
equilibrium height using the formulae in App. B.

1. Calculate the equilibrium dc voltage u1o for your MagLev.

2. Calculate the transfer function G(s) for your MagLev. Normalize your transfer function so that the leading
coefficient in the denominator is 1. (That is, compute G(s) = (ku11/m)/(s2 + βs + (k11/m)).

3. A PID controller which is known to give reasonable performance on all four MagLevs has transfer function1

D(s) = 0.21+ 19.95
s
+ 0.04s = 0.04s2 + 0.21s + 19.95

s
.

(a) Simulate the closed-loop step response for your MagLev using the given D(s) (in continuous-time). If
you use Simulink, you will not be able to enter D(s) as a transfer function since the numerator has
higher-order power of s than the denominator—use a differentiator block to compute this derivative
instead, or combine the plant dynamics and controller dynamics into one transfer-function block.

(b) Estimate (from your simulation) the rise time, settling time, peak overshoot and steady-state error for the
analog control system.

(c) Convert D(s) into a discrete-time equation that is a function of the sampling period T . (Do not use the
canned formula in the ECE4540 course notes; use the method given in this lab writeup. They do not give
the same results.)

(d) Construct a Simulink subsystem which implements your difference equation of part (c).

2.5 LABORATORY EXPERIMENT

During the lab, you will implement a control system using D(s) and a control system using your difference equations
found in the Prelab. In Matlab, create a Simulink block diagram by first typing template

1This transfer function was found using a numerical optimization procedure you will investigate in Lab 8.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs
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>> template

at the Matlab prompt. This opens up a window with the “HW Adapter” block and a “Scope” block already in place,
with many of the parameters set to the correct values.

1. Construct a closed-loop control system using D(s) to control the MagLev. Your Simulink diagram will look
like the one in Fig. 2.2. You can find the “Fix Sensor” block for your MagLev in the utility.mdl library.
(That is, type utility at the Matlab prompt). The A2D and D2A blocks may be found in the rtlib.mdl
library. (That is, type rtlib at the Matlab prompt). The step time should be at 5 sec.

y1ou1o

Step Scope

HW Adapteryraw ycal

Fix Bottom
Sensor

D/A

Digital To Analog
Converter 0

num(s)

den(s)

D(s)

A/D

Analog To Digital
Converter 0

y1raw ycal

Figure 2.2 Analog closed-loop control system in Simulink. Note that you will need to find a different way of implementing D(s) since it
has a pure derivative in it!

2. Run the control system, and record the step response. Use a sampling rate of 2 kHz.

3. Now, construct a discrete-time control system using your difference equations. Your Simulink diagram will
look like the one in Fig. 2.3. Be sure to leave T as a variable parameter in your Simulink block diagram so that
you can change it easily within the Matlab environment (You will have to hard-code the sampling frequency
1/T in the “HW Adapter” block as it does not work if you leave it as a variable. Don’t forget to change the
rate here every time you change it in your workspace!).

y1ou1o

Zero−Order
Hold

Step Scope

HW Adapteryraw ycal

Fix Bottom
Sensor

D/A

Digital To Analog
Converter 0

num(z)

den(z)

D(z)

A/D

Analog To Digital
Converter 0

y1raw ycal

Figure 2.3 Discrete-time closed-loop control system in Simulink. The block denoted D(z) should be replaced by your subsystem which
computes your difference equation.

4. Run your emulated control system for different values of T . (Be sure to change the sampling rate in the
Hardware Adapter block, and Simulink’s “Simulation FParameters” too!) Determine a range of T that seems
to give performance roughly equivalent to the analog control design. Without destroying the equipment,
attempt to find a range of T that gives stable closed-loop response.

5. Record step responses of your discrete-time control system for illustrative values of T to include in your
report.

2.6 ASSIGNMENT

In your report, give a full derivation of the difference equations you used for your PID controller. Include all
computed results (such as u1o, G(s) and so forth). Give simulated and measured step responses for the analog
control system, and compare with the measured step responses of your discrete-time control system for various
values of T . Estimate the bandwidth of the controller D(s) and compare to the sampling frequency 1/T that you
think “works best.” Report the range of T which seems to result in a stable closed-loop system.
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Frequency-Domain Controller Emulation

3.1 INTRODUCTION

In the last lab period you simulated an analog PID control design with a discrete-time controller. You performed the
conversion by changing derivatives to differences and therefore changing LCCODEs to LCCDEs.
In this lab you will also investigate emulation. This time, you will convert a controller transfer function D(s)
directly to a discrete-time transfer function D(z) by recognizing a relationship between s and z. You will also look
at a heuristic method of improving performance (improving damping) of your emulated design which tries to undo
the harmful effects of the zero-order-hold circuit.

3.2 THIS LAB IS. . .

• A second look at emulation using frequency-domain methods.

• Experience with a novel way to compensate for zero-order-hold effects.

3.3 BACKGROUND

In Lab 2, you were introduced to emulation with the realization that the Laplace operator “s” performs a derivative
operation which may be approximated in discrete-time. In this lab, it is more natural to work with the “1/s” operator
which is an integration. Consider

Y (s) = 1
s

X (s) ⇐⇒ y(t) =
∫ t

0
x(τ ) dτ.

If we sample y(t) every T seconds, we get

y(kT ) =
∫ kT

0
x(τ ) dτ

= y((k − 1)T )+
∫ kT

(k−1)T
x(τ ) dτ.

So, y(kT ) is related to y((k − 1)T ) plus an integral of the input signal over one time period.
We can think of at least three ways to approximate a continuous-time integral in discrete-time (see Fig. 3.1 on
page 3–2). Each of the three resulting difference equations may be z-transformed to get:

Forward Rectangular Rule : Y (z) =
[

T
z − 1

]

X (z);

Backward Rectangular Rule : Y (z) =
[

T z
z − 1

]

X (z);

Bilinear Rule : Y (z) =
[

T
2

z + 1
z − 1

]

X (z).

In all cases, the term in the square brackets [·] is an approximation to 1/s in Y (s) = 1
s X (s). So, in order to convert a

continuous-time transfer function D(s) to a discrete-time transfer function D(z), use the following design procedure:
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PSfrag replacements y(t)

y(t)

y(t)

t

t

t

kT

kT

kT

Forward Rectangular Rule
Area ≈ y((k − 1)T ) · T

Backward Rectangular Rule
Area ≈ y(kT ) · T

Trapezoid Rule
(a.k.a., Tustin Rule or Bilinear Rule)

Area ≈ y((k − 1)T )+ y(kT )
2

· T

Figure 3.1 Approximating a continuous-time integral in discrete-time.

Design Procedure

1. Start with analog control design D(s).

2. Replace s 7→ z according to the following table to get D(z).

Forward : s 7→ z − 1
T
; Backward : s 7→ z − 1

T z
; Bilinear : s 7→ 2

T
z − 1
z + 1

.

3.3.1 Approximate compensation for ZOH

One reason that design-by-emulation does not work well is the effect of the zero-order-hold (ZOH) which adds a
delay of T/2 or a phase of −ωT/2 to the open-loop system. This reduces the damping/ stability of the closed-loop
system.
We might consider “reversing” or “inverting” the effect of the ZOH by adding a 2z

z+1 term to our controller. The
added term has a phase of +ωT/2 which cancels the ZOH phase. In practice it is better to add a 2(z−ε)

z+1−2ε term for
small ε. A pole added at −1 amplifies high-frequency sensor noise, and by moving the pole we end up with a more
stable system.
This heuristic method (which can be examined in further detail in Reference [1]) is not guaranteed to work since a
number of approximations have been made along the way whose error accumulates. However, it is always worth
trying it out to see if it improves performance. The design procedure is then:

Design Procedure

1. Start with analog control design D(s).

2. Replace s 7→ z with the forward, backward or bilinear rule to get D ′(z).

3. Compute D(z) = 2(z−ε)

z+1−2ε D′(z), the modified controller which attempts to account for the ZOH.
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3.3.2 Implementation in Simulink

To implement your controller, you will use the discrete-time transfer-function block from the Simulink library. This
block has built-in sampling, so you do not need the ZOH block preceding your controller as you did in Lab 2. Your
control system will look like the one in Fig. 3.2.

3.4 PRELAB ASSIGNMENT

For this lab, the MagLev will be configured in the same way as in Lab 2. You will emulate the same PID controller.

1. Convert D(s) to D(z) using the three methods (but without the ZOH compensation) described in the “Back-
ground” section.

2. Which of the three resulting controllers are causal? (If the order of z in the numerator is strictly greater than
the order in the denominator, the transfer function is not causal).

Leave all results in terms of variable T since you will need to change T when you implement the lab.

3.5 LABORATORY EXPERIMENT

During the lab, you will implement a control system which emulates D(s) using (1) the backward-rectangular rule
and (2) the backward-rectangular rule with ZOH compensation. In Matlab, create a Simulink block diagram to
implement both methods.

1. Construct a discrete-time control system using D(z) calculated with the backward-rectangular rule (without
the ZOH compensation). Your Simulink diagram will look like the one in Fig. 3.2. Be sure to leave T as a
variable parameter in your Simulink block diagram so that you can change it easily within the Matlab environ-
ment (You will have to hard-code the sampling frequency 1/T in the “HW Adapter” block as it does not work
if you leave it as a variable. Don’t forget to change the rate here every time you change it in your workspace!).
The step time should be at 5 sec.

Step Scope

HW Adapter

yraw ycal

Fix Bottom 
Sensor

num(z)

den(z)

Discrete
Transfer Fcn

D/A

D2A Channel 0

u1o y1o

A/D

A2D Channel 0

e(t)

Figure 3.2 Discrete-time closed-loop control system in Simulink.

2. Run your emulated control system for different values of T . (Be sure to change the sampling rate in the
Hardware Adapter block, and Simulink’s “Simulation FParameters” too!) Determine a range of T that seems
to give performance roughly equivalent to the analog control design. Without destroying the equipment,
attempt to find a range of T that gives stable closed-loop response.

3. Record step responses of your discrete-time control system for illustrative values of T to include in your
report.
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4. Repeat steps 1–3 using the controller D(z) found using the backward-rectangular rule with the ZOH compen-
sation. A ε of about 0.1 seems to work well.

5. Optionally, repeat step 1 using the controller D(z) found using the bilinear rule. Your D(z) will have a pole at
−1 which amplifies high-frequency sensor noise, and will not work (at all) well. Move this pole slightly (e.g.,
to −0.9).

3.6 ASSIGNMENT

In your report, give a full derivation of the three controllers found with the three methods (without ZOH compensa-
tion). Which are causal? Show that the controller transfer function obtained with the backward-rectangular rule is
the same as the one found using difference equations in Lab 2.
Compare with the measured step responses of your discrete-time control system for various values of T . For the
two methods investigated in this lab, report the range of T which seems to result in a stable closed-loop system,
and the range of T which seems to give good performance. Compare with the results you found in Lab 2. Does the
ZOH-compensation circuit help?
This is the end of Unit 1. You have the next lab period off to give you time to write your lab report. Your formal
laboratory report covering both labs in this unit is due at the beginning of the subsequent lab period.

References

[1] D. Raviv and E. Djaja, “Techniques for Enhancing the Performance of Discretized Controllers,” IEEE Control
Systems Magazine, Vol. 19, No. 3, June 1999, pp. 52–57.
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Unit 2

Digital Effects

This unit of labs focuses on artifacts of the digital system not present in an analog control system. In:

• Lab 4 you will investigate sampling, aliasing, anti-aliasing filtering and the zero-order-hold operation; in

• Lab 5 you will make a discrete-time model of the plant and verify it by comparing it to the true system
response; in

• Lab 6 you will use fixed-point arithmetic to implement filter coefficients and investigate problems due to
round-off.
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Sampling, Aliasing, Zero-Order-Hold

4.1 INTRODUCTION

In class we have talked about an artifact of digital systems not present in analog systems. When sampling a
continuous-time signal, a phenomenon called aliasing may occur. High-frequency signals may appear as low-
frequency sampled signals. In this lab, you will experience aliasing, and will experiment with an anti-aliasing filter
to eliminate it.

4.2 THIS LAB IS. . .

• A demonstration of aliasing,

• A means of eliminating aliasing via an anti-aliasing filter.

4.3 BACKGROUND

Digital control systems must sample the input signal e(t) in order to generate a compensation signal u(t). This
sampling is usually done on a regular (periodic) basis, so we refer to a sampling frequency as being 1/T where T is
the period between samples. The input to the digital controller is then e(kT ) or more simply e[k].

Figure 4.1 Time-domain example of aliasing.

If sampling is not done “quickly enough” a phenomenon called aliasing occurs. This is demonstrated in the time
domain in Fig. 4.1. The solid (blue) line indicates a cosine of frequency 5 Hz. If this signal is sampled at 14 Hz the
points indicated by (blue) squares are the samples. The signal may be well reconstructed from these samples. If,
however, the signal is sampled at 7 Hz, the points indicated by (green) circles are the samples. This signal cannot
then be distinguished from the 2 Hz sinusoid shown as the (green) dashed line. Therefore, if we sample too slowly
(7 Hz), our 5 Hz signal masquerades or aliases as a different 2 Hz signal.
If we consider what is happening in the frequency domain, we find that the spectrum of the sampled signal is periodic
in fs . The 5 Hz cosine, which has frequency content at ±5 Hz, repeats every 14 Hz when sampled at 14 Hz and so
has frequency content at ±5 Hz, ±9 Hz, ±19 Hz and so forth. Since we only consider frequencies within the band
± fs/2, then we are left with a sampled-signal spectrum of ±5 Hz, which is what we would like.
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On the other hand, if we sample the signal at 7 Hz, then the sampled signal has frequency content at ±2 Hz, ±5 Hz,
±9 Hz and so forth. Since we only consider frequencies within the band ± fs/2 then we are left with the sampled-
signal spectrum of ±2 Hz, which is not what we expect.
Shannon/Nyquist showed that in order to avoid aliasing, the sampling frequency must be at least twice the highest
frequency present in the input signal. For the cosine example, above, we must sample at a rate of at least 10 Hz. This
explains why the 14 Hz sampling rate “worked” and the 7 Hz rate did not. A practical difficulty in applying this rule
is that real signals are not strictly band-limited. Therefore, we must make engineering approximations and tolerate
some aliasing, or place an analog anti-aliasing low-pass filter placed before the sampler will also help eliminate
effects due to aliasing. (A digital filter placed after the sampler will not work—why?)

4.4 PRELAB ASSIGNMENT

During the lab, you will sample three types of signals: sinusoidal, triangle-wave and square-wave.

1. Determine the complex-exponential Fourier series of:

(a) A sinusoidal signal y1(t) = cos(2π f t).
(b) A triangle wave y2(t) = −4 f |t | + 1 for |t | ≤ 1

2 f and periodic thereafter.
(c) A square wave y3(t) = sgn(y1(t)).

You may look up the series in a table—you do not need to derive them if you can find a reference somewhere.

2. In the lab, you will use signal frequencies f = 25 Hz for most experiments. Plot the line spectra for the above
three signals with this f .

3. If you sample at a rate of fs = 100 Hz, draw the aliased line spectra for the above three signals.

4. You will use an anti-aliasing low-pass filter with transfer function

H(s) = 25000
s2 + 200s + 25000

after the signal source and before the sampler. Plot the line spectra for the three signals after filtering (Magni-
tude only). Should this help eliminate aliasing when the signals are sampled? How do you expect the shape
of the three signals to be changed by the anti-aliasing filter?

4.5 LABORATORY EXPERIMENT

For the first experiment, hook up the apparatus as shown in Fig. B.10 on page B–11. Construct a Simulink block
diagram as shown in Fig. 4.3. The frequency generator supplies the source signal, which is displayed on the scope
and input to the computer via the A2D and A2D/ ports of the breakout box. The computer passes the signal straight
through (sampling it). Connect the computer output D2A and D2A/ back to another channel of the scope.
In the following “oscilloscope” refers to the hardware box dedicated to this task, and “scope” refers to the Simulink
block which records data.

1. Set the frequency generator to generate sinusoidal signals of amplitude 5 V and no dc-offset. (Check the
amplitude on the oscilloscope before connecting to the computer so that you do not damage the computer!)

2. Construct the Simulink block diagram of Fig. 4.3. Set the sampling rate to 100 Hz.

3. Generate frequencies between 0 Hz and 50 Hz and run them through the computer. Do the signals recorded by
Simulink’s “scope” block look correct? How does the computer output signal on the oscilloscope correspond
to the signal from the signal generator? Record a few representative results from Simulink’s “scope” block.
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Figure 4.2 Setup for aliasing experiment.
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D/A

Digital To Analog
Converter 0

A/D

Analog To Digital
Converter 0

Figure 4.3 Simulink diagram to sample and pass-through samples.

4. Generate frequencies between 50 Hz and 200 Hz and run them through the computer. Do the signals recorded
by Simulink’s “scope” block look correct? How does the computer output signal on the oscilloscope corre-
spond to the signal from the signal generator? Record a few representative results from Simulink’s “scope”
block. Sketch output from the oscilloscope to show aliasing occurring.

An anti-aliasing filter has been constructed for you and implemented on a GP-6 analog computer (see Fig. 4.4
on page 4–4). It has nominal transfer function H(s) as mentioned in the prelab. The input leads and output
leads from the GP-6 filter are labeled.

5. Hook up the anti-aliasing filter between the frequency generator and the oscilloscope. That is, run the output
of the signal generator to the input of the GP-6 filter; run the output of the GP-6 filter to the oscilloscope and
into the computer. View the oscilloscope and visually compare the output of the frequency generator and the
output of the anti-aliasing filter as you vary the frequency from 0 Hz up to 200 Hz. Repeat steps 3–4. You may
need to set the frequency-generator output to about 3 V to avoid overflow on the GP-6 computer.

6. Set the frequency generator to generate 25 Hz triangle-wave signals of amplitude 3 V and no dc-offset. Run
the frequency-generator output through the computer. Do the signals recorded by Simulink’s “scope” block
look correct? How does the computer output signal on the oscilloscope correspond to the (filtered) signal from
the signal generator? Record a few representative results from Simulink’s “scope” block. Do this step both
with and without the anti-aliasing filter.

7. Set the frequency generator to generate 25 Hz square-wave signals of amplitude 3 V and no dc-offset. Run the
frequency-generator output through the computer. Do the signals recorded by Simulink’s “scope” block look
correct? How does the computer output signal on the oscilloscope correspond to the (filtered) signal from the
signal generator? Record a few representative results from Simulink’s “scope” block. Do this step both with
and without the anti-aliasing filter.
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Figure 4.4 Setup for aliasing experiment, with anti-aliasing filter.

4.6 ASSIGNMENT

In this lab, you will collect a lot of data. Organize your Prelab and Experiment results and indicate correspondences
with theory, and any unusual or unexplained results.
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Discrete-Time Plant Modeling

5.1 INTRODUCTION

From now on, all of our control-system analysis and design will be done using z-transforms and w-transforms. Both
of these require that a discrete-time plant model be made.
A discrete-time plant model combines the LTI dynamics of the zero-order-hold and the analog plant, and relates the
plant output at the sample instants with the digital controller output at the sample instants. The plant model may be
represented as a transfer function G(z) or—using the bilinear transformation—as a transfer function G(w).
In this lab, you will create discrete-time plant models G(z) and G(w) of the MagLev device which are functions
of the sample period T . You will test these models at different sampling frequencies to verify that they reasonably
predict the MagLev’s behavior.

5.2 THIS LAB IS. . .

• A demonstration of discrete-time transfer functions,

• Experience in both the z- and w-domains.

• More fun with the MagLev!

5.3 BACKGROUND

5.3.1 Hybrid systems analyzed at sampling instants

Digital control systems are neither completely digital nor completely analog. They are hybrid systems which contain
both digital and analog elements. (Another name which is used to describe hybrid systems like this is “sampled-data
systems.”) The compensator D(z) is a digital system, and the plant G p(s) is an analog system. The sampler and
zero-order-hold devices are a bit of each.

PSfrag replacements

R(s)

E(s)
E∗(s)

Y (s)
T

HOLD G p(s)

H(s)

D(z)

G(s)
︷ ︸︸ ︷

Figure 5.1 Closed-loop hybrid control system.

We have seen that in order to analyze hybrid systems in continuous time, the starred Laplace transform needs to be
used; e.g., X ∗(s). If we only need to evaluate system response at the sampling instants, the z-transform may be used.
This is generally much simpler. Furthermore, the bilinear transform relates the z-domain to the w-domain, which
allows frequency-response methods of Laplace analysis and design to be used on digital/hybrid systems.
Figure 5.1 shows the general configuration used for digital control. We have seen in class that the closed-loop
transfer function for this system is

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs



ECE4560, Discrete-Time Plant Modeling 5–2

T (z) = D(z)G(z)

1+ D(z)G H(z)
,

where

G(z) = z − 1
z

Z

{
G p(s)

s

}

and G H(z) = z − 1
z

Z

{
G p(s)H(s)

s

}

.

Therefore, we can analyze the system if we know G(z) and G H(z). Furthermore, we will find that we can analyze
and design control systems in the w-domain by using the bilinear transform

T (w) = T (z)|z= 1+(T/2)w
1−(T/2)w

.

We can also find T (w) by individually converting D(z) 7→ D(w), G(z) 7→ G(w) and G H(z) 7→ G H(w) and
computing

T (w) = D(w)G(w)

1+ D(w)G H(w)
.

In this lab, you will compute G(z) and G(w) for future reference.

5.3.2 Computing G(z) and G(w)

Recall that the analog transfer function of the MagLev, operating with a single disk (lower position) is

G p(s) =
ku11

ms2 + mβs + k11
.

We could use the Matlab c2d command to find the transfer function G(z) for a specific value of T . Alternately, we
could convert the plant dynamics to the z-domain for symbolic T . To see how to do this, we need to “complete-the-
square” in the plant’s transfer function denominator, and write the result as

G(z) = z − 1
z

Z

{
G p(s)

s

}

= z − 1
z

Z

{

g
a2 + b2

s((s + a)2 + b2)

}

,

where g is the dc-gain of the analog plant. The z-transform of this result may be found using the table (entry 22) on
the FPW front flyleaf:

G(z) = g
Az + B

z2 − 2e−aT (cos bT )z + e−2aT
,

where

A = 1− e−aT cos bT − a
b

e−aT sin bT ;

B = e−2aT + a
b

e−aT sin bT − e−aT cos bT .

We can then find
G(w) = G(z)|z= 1+(T/2)w

1−(T/2)w

= g
A 1+(T/2)w

1−(T/2)w + B
(

1+(T/2)w
1−(T/2)w

)2
− 2e−aT (cos bT )

(
1+(T/2)w
1−(T/2)w

)

+ e−2aT
.
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5.3.3 In Matlab?

In Matlab, you can convert a continuous-time transfer function to a discrete-time transfer function in z via

sysc=tf(num,den); % Continuous-time transfer function.

sysd=c2d(sysc,Ts,’zoh’); % Ts=sampling period.

Converting from a transfer-function in z to a transfer function in w is not quite so smooth as Matlab does not directly
understand the w-domain. The following command

sysw=d2c(sysd,’tustin’); % Be careful to understand!

converts from the z-domain back to a transfer function written in s, but the numbers are the same as if you had done
the bilinear transform to the w-domain. That is, the sysw transfer function is written as a function of s in Matlab,
but if you replace s with w you have done the w-transform.

5.4 PRELAB ASSIGNMENT

1. For your MagLev, and for sampling rates of 100 Hz, 150 Hz and 200 Hz find G(z) and G(w). Do by hand for
one sampling rate, and verify with Matlab. You may use Matlab to automatically do the other two.

2. Plot the Bode-magnitude plot for G p(s).

3. Plot the Bode-magnitude plot for G(w) for all three sampling rates.

5.5 LABORATORY EXPERIMENT

Generate a Simulink model as shown in Fig. 5.2. Levitate the magnet around an equilibrium height of 2.5 cm.

Sine Wave
Scope

HW Adapter

num(z)

den(z)

G(z)

yin yout

Fix Bottom
Sensor

D/A

Digital To Analog
Converter

y1ou1o

A/D

Analog To Digital
Converter0

y1raw y1calu1* y1*calu1

Figure 5.2 Setup for testing G(z).

1. Use a sampling frequency of 100 Hz.

2. For sinusoidal frequencies between 0 rads/sec and 40 rads/sec and appropriate magnitudes (so that the magnet
moves, but does not slam against the lower stop) record system output and model output.

3. Optional: Experiment with a random signal source (replace the sine-wave generator). Compare model output
with system output at the sampling points.

4. Repeat step 2 for sampling frequencies 150 Hz and 200 Hz.
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5.6 ASSIGNMENT

Comment on how well your discrete-time model G(z) agrees with the sinusoidal responses you measured, for the
three different sampling frequencies and at different test frequencies. Make a rough Bode-magnitude plot of system
response from your results, and compare with the Bode-magnitude plot of G(w). Note that G(w) has a “warped”
frequency axis. Comment on similarities and differences. Try to explain any differences.
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Filter Structure and
Finite-Precision Effects

6.1 INTRODUCTION

Digital computers are finite-precision machines. A signal value can only take on one of a finite set of possible values;
a transfer-function coefficient can also only take on one of a finite set of possible values. In the lab so far, we have
used floating-point numbers as signal values and as coefficient values and this has largely mitigated finite-precision
effects. However, floating point processors are relatively expensive, so it is important to understand finite-precision
effects and how to design for finite-precision fixed-point machines.

6.2 THIS LAB IS. . .

• An introduction to finite-precision effects,

• One method to implement controller structures which help reduce sensitivity to finite-precision effects.

6.3 BACKGROUND

Inexpensive micro-controllers, which are often used to implement digital control systems, are fixed-point processors.
A certain number of binary digits are used to represent each number; some of these digits are assumed to be to the
left of the binary point and some are assumed to be to the right of the binary point. An example four-bit number is
then

b0 b1 . b2 b3

which is represented in decimal as b0 × 21 + b1 × 20 + b2 × 2−1 + b3 × 2−2. Sixteen possible values may be
represented: 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5 and 3.75. If signed numbers are
desired, then one bit is used as the sign value. The sixteen possible values are then: −2, −1.75, −1.5, −1.25, −1,
−0.75, −0.5, −0.25, 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5 and 1.75. With a four-bit number we could also assume that the
fixed point was in the following configurations

b0 . b1 b2 b3 b0 b1 b2 . b3 or b0 b1 b2 b3 . .

A leading fixed point does not make sense as the b0 bit is generally the sign bit.
Since only a finite set of numbers may be represented with a fixed-point value, the following effects occur:

1. Quantization noise at A2D: When real-world signals enter the computer at the A2D, the real-valued signal
must take on one of a finite set of values. The analog value is generally rounded to the nearest digital value.
The difference between the true analog value and the digital value is quantization error. This quantization
error may be modeled as a noise source.
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2. Quantization noise at D2A: The internal representation of signals often has a greater number of bits than the
D2A is able to handle. For example, internal computations may be performed with 32-bit numbers, but the
D2A is only able to handle 16-bit numbers. Converting the 32-bit numbers to 16-bit numbers introduces
another source of quantization error.

3. Internal overflow: When performing computations with fixed-point numbers, it is possible to obtain a result
which cannot be correctly represented. For example, when using the first four-bit scheme above, we could add
3 plus 3, but not get the value 6 since we can only represent numbers up to a maximum of 3.75. Due to the
vagaries of twos-complement arithmetic, we would get the value 2, which makes little sense.

4. Limit cycles: A strange thing indeed! A perfectly stable system with zero input can have oscillating output
which does not decrease in amplitude.

5. Coefficient quantization changes filter transfer function: We know that transfer functions may be represented
as rational polynomials in z, and the coefficients of the polynomials are also the coefficients of the difference
equations used to implement the controller. These coefficients must be represented in our fixed-point number
scheme, so round-off occurs when implementing the coefficients of the difference equation. This in turn moves
the poles and zeros of our compensator, so that we implement a transfer function that is different from what
we intended to implement.

During this lab, you will investigate this final effect.

6.3.1 Two Filter Structures

Transfer function
 

                  z^2 + b1 z + b2      
   H(z) = g −−−−−−−−−−−−−      
                  z^2 + a1 z + a2      

1
uk

z

1

z

1

−a1

−a2

g

b2

b1

1
ek

Figure 6.1 Direct Form II second-order section.

For any given controller transfer function D(z) there are a wide variety of ways to implement it using unit delays,
multipliers and summation units. Often, D(z) is broken down into a cascade of “second-order sections” D(z) =
D1(z)D2(z) · · · Dn(z) where each second-order section has two zeros and two poles. One way to implement a
second-order section (called “Direct Form II”) is shown in Fig. 6.1.
The coefficients of the multipliers in this form are g, b1, b2, a1 and a2. If the coefficients of the filter can only take
on a finite set of possible values due to quantization, this will affect the poles and zeros implemented by the filter.
That is, the poles and zeros implemented will be different from those designed. To see what happens, consider one
section

D1(z) =
z2 − 2r1 cos θ1z + r2

1

z2 − 2r2 cos θ2z + r2
2

where r1 is the radius to the zeros, ±θ1 is the angle to the zeros, r2 is the radius to the poles and ±θ2 is the angle
to the poles. In a Direct-Form-II section, b1 = −2r1 cos θ1, b2 = r2

1 and so forth. Therefore, if we quantize b1 and
b2 uniformly, we are actually quantizing the radius and angles non-uniformly. A sample grid showing quantized
radii and r1 cos θ1 (real part of pole location) is shown in Fig. 6.2 on page 6–3(a). Poles and zeros may only be
implemented at the intersection of the vertical grid lines and radial grid lines.
Some observations may be made:
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(b) 1X-form

Figure 6.2 Quantized pole locations for Direct-Form II and 1X-Form.

• Narrow-band lowpass and narrow-band highpass filters are most sensitive (since they cluster poles around±1)
and hence require more bits to implement.

• Sampling at too high a rate is bad, since it pushes poles closer to +1 (where pole density is smallest.)

Because of these undesirable features, we can use an alternative filter implementation, called the 1X-form. This form
is illustrated in Fig. 6.3 on page 6–4. The filter parameters are calculated by converting D1(z) to a partial-fraction
expansion:

D1(z) = a0 +
A

s − p
+ A∗

s − p∗ ,

where
g1 = R(p); g2 = I(p);
g3 = 2I(A); g4 = 2R(A),

in the diagram. A Matlab code segment to find a0, g1, g2, g3 and g4 from a given second-order D(z) is:

[num,den]=tfdata(d); num=num{:}; den=den{:};

[r,p,a0]=residue(num,den);

g1=real(p(1)); g2=imag(p(1)); g3=2*imag(r(1)); g4=2*real(r(1));

All filter coefficients in the 1X-form second-order section that are related to the pole locations are of the form R(p)
or I(p). Therefore, quantizing g1 and g2 uniformly leads to uniform pole density in the real and imaginary-axis
directions. A sample grid showing quantized locations is shown in Fig. 6.2(b). Poles may only be implemented at
the intersection of the vertical grid lines and horizontal grid lines.
This form often leads to more precise implementation with fewer bits precision. The price we pay for improved
fidelity is the increased complexity of the second-order section.

6.4 PRELAB ASSIGNMENT

Verify the transfer functions of the Direct-Form II section in Fig. 6.1 on page 6–2 and the 1X-section in Fig. 6.3 on
page 6–4.
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Transfer function

                    A           A*
H(z) = a0 + −−−− + −−−−
                    z−p       z−p*

where: g1=Re[p], g2=Im[p]; 
                           g3=2Im[A]; g4=2Re[A];             

1
uk
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1

z

1

g4
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−g2

g1

a0

1
ek

Figure 6.3 1X Form second-order section.

6.5 LABORATORY EXPERIMENT

1
intout

z

1

1
intin

Figure 6.4 Integrator form without coefficient quantization.

For this experiment, you will use a sampling rate of 50 Hz. A controller which provides acceptable performance for
all four MagLevs is

D(z) = 2.7896
z2 − 1.6923z + 0.8918
z2 + 0.2114z + 0.5108

z
z − 1

.

The integrator term, z/(z− 1), may be implemented as shown in Fig. 6.4, without worry of coefficient quantization.
The constant gain 2.7896 may be implemented as a multiply by four (shift left two bits, without quantization)
followed by a multiply by 0.6974. In practice, the constant 0.6974 will need to be quantized to fit the number of bits
available. Finally, the second-order section may be realized in either Direct-Form-II or in 1X-Form. All coefficients
must be quantized to the number of bits available. Coefficients greater than one may be implemented in a similar
way to the constant gain of 2.7896, above.

1. Implement the controller D(z) using the Simulink discrete-time transfer-function block (without coefficient
quntization—this is the baseline test). Use an equilibrium height of 2.5 cm. Plot the step response of the
system (with the step starting at 5 sec.

2. Implement the controller D(z) using Direct Form II, and quantized coefficients. Record step responses for
decreasing precision until performance is badly degraded.

3. Repeat step 2 using 1X-Form.

Note, in order to quantize a number in Matlab,

quantval = quant( preciseval, 2^-(nobits-1) );
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where: preciseval is the precise value to be quantized, quantval is the output quantized value and nobits
is the number of bits available to store the number. The term (nobits-1) reflects the fact that one of the available
bits is used as sign information.

6.6 ASSIGNMENT

Discuss all results. Particularly, do you notice any benefit using 1X-Form versus Direct Form II? How many bits
precision did you need when implementing coefficients? Is floating point “overkill” from the point of view of
this control design (Note that Matlab’s double-precision values require 64 bits to store)? Plot the design pole-zero
mapping and the implemented pole-zero mapping for each resolution attempted.
This is the end of Unit 2. You have the next lab period off to give you time to write your lab report. Your formal
laboratory report covering all three labs in this unit is due at the beginning of the subsequent lab period.
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Unit 3

Transfer Function Controller Design

This unit of labs focuses on digital control system design using transfer-function design methods. The MagLev will
be configured in a two-disk single-input multi-output (SIMO) configuration. In:

• Lab 7 you will use standard frequency-response design methods; in

• Lab 8 you will design a controller using numeric optimization methods; in

• Lab 9 you will use Ragazzini’s direct method to design a controller.

Remember that if a control-system design is properly done, testing is very fast. The majority of your time will be
spent on the Prelab assignment, designing the controller in the first place.
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Frequency-Response Controller Design

7.1 INTRODUCTION

In this unit of labs you will consider the MagLev configured with two magnets stacked on the glass rod. Both
magnets are free to move but you will only be interested in controlling the position of the lower magnet, and will
use the lower sensor as the feedback information.
In mechanical systems when the primary feedback sensor is rigidly coupled to the actuator, the system is referred to
as being collocated. When some flexible structural member exists between the actuator and the sensor,1 the system
is referred to as being noncollocated. Systems with flexibly coupled inertia occur commonly in industry. Examples
include flexible drive shafts, conveyor belts, and other mechanical linkages. An example of collocated control in
such cases is when the feedback sensor is integral with the drive motor even though there may be flexible elements
that are driven by the motor. An example of noncollocated control is when a flexible conveyor belt position is fed
back for closed loop control. The configuration you will be investigating is collocated control.

7.2 THIS LAB IS. . .

• Control of a higher-order system, using frequency-response methods,

• An example of single-input multi-output (SIMO) control.

7.3 BACKGROUND

7.3.1 Model of the two-disk system

In previous labs, you controlled the MagLev with a single disk on the glass rod. In this and future labs, two disks
will be placed on the glass rod. We must modify the plant model to consider the full dynamic interaction between
them. The linearized equations from App. B give us a system model:

mÿ∗
1 + mβ ẏ∗

1 + (k11 − k21 + km12)y∗
1 − km12 y∗2 = ku11u∗

1 + ku12u∗
2

mÿ∗
2 + mβ ẏ∗

2 + (k22 − k12 + km12)y∗
2 − km12 y∗1 = ku22u∗

2 + ku21u∗
1.

Let u∗
2 = 0 since we are only using the lower coil as input. An additional effect of u∗

2 = 0 is that k21 = k22 = 0.
Take Laplace transforms:

ms2Y1(s)+ mβsY1(s)+ (k11 + km12)Y1(s)− km12Y2(s) = ku11U1(s)
ms2Y2(s)+ mβsY2(s)+ (km12 − k12)Y2(s)− km12Y1(s) = ku21U1(s)

Y2(s) =
ku21U1(s)+ km12Y1(s)

ms2 + mβs + km12 − k12
.

Substituting into the first equation,

1There may be multiple sensors used including ones that are both collocated and noncollocated relative to the actuator. If the location of
the control objective is not collocated with the actuator, then the plant is typically referred to as being noncollocated.
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(

ms2 + mβs + k11 + km12 −
(km12)

2

ms2 + mβs + km12 − k12

)

Y1(s) =
(

ku1 +
km12ku21

ms2 + mβs + km12 − k12

)

U1(s).

This gives us the transfer function

Y1(s)
U1(s)

= ku11ms2 + ku11mβs + ku11km12 − ku11k12 + km12ku21

m2s4 + 2m2βs3 + m(mβ2+k11+2km12−k12)s2 + mβ(k11+2km12−k12)s + k11km12−k11k12−km12k12
.

The open-loop system is analogous to that of Fig. 7.1. The effective “spring” km12 is the linearized term resulting
from the forces of gravity and magnetic repulsion acting on the second magnet. Recall however that this term is in
fact quite nonlinear. The addition of the spring and second inertia to the rigid body case studied above increases the
plant order by two and adds an oscillatory mode to the plant dynamics.

PSfrag replacements

k11
km12

k′2

m1 = m m2 = m

F1 = ku11u∗
1 F2 = ku21u∗

1

y∗1 y∗2

mβ
mβ

Figure 7.1 Analogous system to idealized SIMO plant.

7.4 PRELAB ASSIGNMENT

In this lab, the MagLev will be operated around the equilibrium point y1o = 1 cm. The inter-magnet separation is
nominally y12o = 8 cm. y2o = y1o + y12o − 13.

1. Compute u1o such that y1o = 1 cm. It is very important in this configuration to keep y1o small. The weight of
both magnets plus the control actuation force is supplied by the lower coil. The required current increases
dramatically with height of the lower magnet. Excessive amplitude for sustained duration will overheat the
coil and damage the apparatus. Note: from the equilibrium condition in App. B, and multiplying by 100 to
get the correct units, we know that

u1o = a(y1o + b)4
(

100mg + c
(y12o + d)4

)

.

2. Determine the transfer function G(s) of the two-disk system; that is, fill in the numbers and be careful with
units. Normallize the transfer function (divide numerator and denominator by m2) so that the leading coeffi-
cient of the denominator is one.

In the following parts, automate your design using Matlab m-file(s) so that you can easily redesign for different
sampling rates, etc.

3. Determine the transfer function G(z) of the two-disk system (You do not have to do this by hand). Use a
sampling rate of 50 Hz.

4. Your z-plane controller will have the form

D(z) = Kd
z − z0

z − z p

T z
z − 1

,

which is a lead controller cascaded with an integrator. The integrator eliminates steady-state error and the lead
controller changes the dynamics. For the purpose of designing the lead controller, the fixed T z/(z − 1) term
is added to the “plant” dynamics. State the new G ′(z) (with the integrator added), and convert G ′(z) to G ′(w).
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5. You will use frequency-response design methods to design D ′(w) to control G ′(w). Your compensator will
have the form

D′(w) = a0

[
1+ w/ωw0

1+ w/ωwp

]

.

Use a0 = 10. Design for a phase margin of at least 60◦. Have Matlab produce Bode plots of your compensated
system to verify that you have achieved the desired phase margin. Also plot the step-response of the closed-
loop system.

6. Convert D′(w) to D′(z) and then state D(z).

7.5 LABORATORY EXPERIMENT

1. Implement your feedback control system in Simulink. The controller itself should be implemented as two
blocks in cascade. The lead controller should operate directly on the error signal, and the integrator should
operate on the output of the lead controller. See Fig. 7.2. (You will need to double-click on the integrator and
change the integration method to get T z/(z − 1) instead of the default T/(z − 1).

Step
Scope1

Pulse
GeneratorHW Adapter

yrawycal

Fix Top
Sensor

yrawycal

Fix Bottom
Sensor

Tz

z−1

Discrete−Time
Integrator

D/A

Digital To Analog
Converter 1

D/A

Digital To Analog
Converter

num(z)

den(z)

D’(z)

y1ou1o

A/D

Analog To Digital
Converter 1

A/D

Analog To Digital
Converter

Figure 7.2 SIMO control system.

2. For a reference input equal to a unit step at time 5 sec, record your system output.

3. Touching only the edges of the disks, manually move each disk. Can you feel the controller opposing your
movement?

4. Manually raise the lower disk by about 4 cm for about 2 sec. Gently lower the disk and release it. Observe the
system’s response for at least 5 sec and explain it.

5. Now, double-click on the integrator block and limit its output to be in the range −2 . . . 8. Repeat step 4.
Explain the difference in behavior. Hint: Recall “integrator anti-windup”.

6. You will now use the upper coil to impart a disturbance force on the upper magnet. This will in turn affect
the lower magnet, and you will be able to see how effective your control system is at rejecting disturbances.
Connect a “Pulse Generator” source block directly to DAC2 (D2A channel 1). Set the amplitude of the pulse
generator to 0.5, and record simulation runs with pulse periods of 4, 2, 1, 0.5 and 0.25 seconds.

7. Repeat step 2 for a slower sampling rate. (You will need to redesign your controller.) How slowly can you
sample and still get reasonable performance?
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7.6 ASSIGNMENT

Report your controller design. Discuss the transient and steady-state response of your closed-loop system. Explain
the behavior of the system when you manually disturb the lower disk for a lengthy period of time. Discuss the
disturbance-canceling performance of your system. How slowly can you sample and still get reasonable perfor-
mance? What sampling rate do you recommend using?
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Numeric Optimal PID Controller Design

8.1 INTRODUCTION

A generic PID controller implements a difference equation of the form
u[k] = u[k − 1]+ q0e[k]+ q1e[k − 1]+ q2e[k − 2].

The values {q0, q1, q2} represent some set of PID coefficients {K , TD, TI }. In order to make a PID control design
to optimize some performance criteria, we need to optimize the values of {K , TD, TI } or, equivalently, the values of
{q0, q1, q2}. In this lab you will use a numeric PID optimization routine to find values of {q0, q1, q2} to give good
control results.1

8.2 THIS LAB IS. . .

• An introduction to numeric control-design techniques.

• Another example of single-input multi-output (SIMO) control.

8.3 BACKGROUND

8.3.1 Numeric Design of PID Controllers

Any digital controller is implemented via difference equations. For example, a PID controller is implemented via
the equations

u[k] = u[k − 1]+
K
[(

1+ T
TI
+ TD

T

)

e[k]−
(

1+ 2TD

T

)

e[k − 1]+ TD

T
e[k − 2]

]

(8.1)

or,
u[k] = u[k − 1]+ q0e[k]+ q1e[k − 1]+ q2e[k − 2]

where q0, q1, and q2 are constants. In order to optimize the controller to meet some desired specifications, we must
choose the coefficients {q0, q1, q2}.
One method to do this is to “fiddle” with the coefficients in an intelligent way in order to get the closed-loop transfer
function to resemble some desired closed-loop transfer function as closely as possible. We compare the output of
our controlled system with the desired system, and the difference in the output at each time sample is e[k]. We can
then compute a “cost function” J such as

J =
∑

k

|e[k]|2.

If we design our controller to minimize J then the output of our controlled system approximates the desired output
as closely as possible.

1Incidentally, this is how the controllers in Labs 2 and 6 were developed. They were designed to optimize the average performance of the
controller over the four MagLevs.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs



ECE4560, Numeric Optimal PID Controller Design 8–2

8.3.2 Function Minimization in Three(+) Dimensions

Our PID controller design problem is an optimization problem in three variables. We start out with an initial guess
as to good values for q = {q0, q1, q2}. Then, we approximate the gradient ∇ Jq of J with respect to q . If we change
our q values in the direction of the negative gradient, we are descending down the error surface toward a minimum.
Specifically:

1. Start with a guess. q = {q0, q1, q2}.
2. Set the “step size” to a small value. Say γ = 10−3, and set the gradient “test step sizes” δq0 = δq1 = δq2 to a

value smaller than γ .

3. Estimate the slope in the q0-direction:
∂ J
∂q0
≈ J (q0 + δq0, q1, q2)− J (q0, q1, q2)

δq0

4. Estimate the slope in the q1-direction:
∂ J
∂q1
≈ J (q0, q1 + δq1, q2)− J (q0, q1, q2)

δq1

5. Estimate the slope in the q2-direction:
∂ J
∂q2
≈ J (q0, q1, q2 + δq2)− J (q0, q1, q2)

δq2

6. Normalize the gradient for better performance

1 =
√
(
∂ J
∂q0

)2

+
(
∂ J
∂q1

)2

+
(
∂ J
∂q2

)2

.

7. Update q0, q1 and q2:

q0 ← q0 −
γ

1

(
∂ J
∂q0

)

; q1 ← q1 −
γ

1

(
∂ J
∂q1

)

; q2 ← q2 −
γ

1

(
∂ J
∂q2

)

.

8. Repeat from (3) until convergence.

Note that every evaluation of J (x, y, z) requires that you evaluate the system performance for the controller defined
by the parameters {x, y, z}. Four separate evaluations are required per iteration of the above loop (J (q0, q1, q2)

needs be evaluated only once). In the case of trying to match a step-response design criteria, four step responses
need be simulated per iteration.

8.3.3 Example

The following code segment is similar to what you will need to write for this lab. The goal is to make the step
response of the digital plant G(z) = z2+0.2z+0.02

(z+0.8)(z2+0.6z+0.36) resemble the ideal unit step 1[k] as closely as possible.

g=zpk([0.1+0.1*j 0.1-0.1*j],[0.3+0.5*j 0.3-0.5*j 0.8],1,-1);

gamma=0.01; dq=0.001; T=20;

des = ones([T+1 1]); % desired step response

q0 = 0; q1 = 0; q2 = 0
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maxiter=410; J=zeros([1 maxiter]);

for i=1:maxiter,

d=tf([q0+dq q1 q2],[1 -1 0],-1);

t=feedback(d*g,1); s=step(t,T+1); J1=norm(des-s);

d=tf([q0 q1+dq q2],[1 -1 0],-1);

t=feedback(d*g,1); s=step(t,T+1); J2=norm(des-s);

d=tf([q0 q1 q2+dq],[1 -1 0],-1);

t=feedback(d*g,1); s=step(t,T+1); J3=norm(des-s);

d=tf([q0 q1 q2],[1 -1 0],-1);

t=feedback(d*g,1); s=step(t,T+1); J(i)=norm(des-s);

if (mod(i-10,100)==0),

J(i), plot(0:T,s); axis([0 T 0 1.4]); drawnow;

end;

p1=(J1-J(i))/dq; p2=(J2-J(i))/dq; p3=(J3-J(i))/dq;

Delta=sqrt(p1*p1+p2*p2+p3*p3);

q0=q0-(gamma/Delta)*p1; q1=q1-(gamma/Delta)*p2; q2=q2-(gamma/Delta)*p3;

end;

The left plot below shows the step response of the system evolving over time, and the right plot shows the “learning
curve” of the optimization (A learning curve plots J versus iteration to show how the cost is being minimized).
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8.3.4 Initial Guess for K , TI and TD:

In the case of designing a PID controller numerically, the Ziegler-Nichols rules may be used to provide a reasonable
initial guess for {q0, q1, q2}. Recall the “second method” of Ziegler and Nichols: Configure your plant as:PSfrag replacements

Kur(t) y(t)Plant
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Turn up gain Ku until system produces oscillations (on stability boundary) Ku = “ultimate gain.” Measure the period
of oscillations: Pu is the period. The K , TI and TD parameters may then be chosen as shown in the table below
(Convert to q0, q1, q2 using Eq. (8.1).)

PSfrag replacements

Period, Pu
1 RESULTING TUNING RULES:

P PI PID
K = 0.5Ku

TI = ∞
TD = 0

K = 0.45Ku

TI = 1
1.2 Pu

TD = 0

K = 0.6Ku

TI = 0.5Pu

TD = Pu
8

8.4 PRELAB ASSIGNMENT

In this lab, the MagLev will be configured identically to Lab 7. Again, it will be operated around the equilibrium
point y1o = 1 cm. The inter-magnet separation is nominally y12o = 8 cm.

1. Recall u1o such that y1o = 1 cm; the transfer function G(s) and the transfer function G(z) from Lab 7. Use a
sampling rate of 50 Hz.

2. Determine initial conditions for the numeric optimization {q0, q1, q2} using the approximate values Ku = 0.4
and Pu = 0.3 sec.

3. Your controller will implement the difference equation
u[k] = u[k − 1]+ q0e[k]+ q1e[k − 1]+ q2e[k − 2].

Use a numeric optimization routine to find {q0, q1, q2} which give closed-loop step response most closely
resembling the step response of the analog prototype system

T (s) = 20
s + 20

.

Minimize the cost function J =∑

k |ek |2.

(a) State the transfer function D(z) of the controller you find.
(b) Plot the step response of your optimized system.
(c) Plot the “learning curve” showing how J decreases versus iteration.

8.5 LABORATORY EXPERIMENT

1. Implement your feedback control system in Simulink.

2. For a reference input equal to a unit step at time 5 sec, record your system output.

3. See how well your design rejects disturbance by repeating Lab 7 experimental step 6.

8.6 ASSIGNMENT

Report your controller design. Discuss the transient and steady-state response of your closed-loop system. How well
does the physical system correspond with your design?
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Ragazzini’s Direct Control Design Method

9.1 INTRODUCTION

Many of the transfer-function design techniques we have discussed (lead/lag, etc) grew out of the limitations of
technology to implement continuous-time compensators using resistors, capacitors and the like. With controllers
realized by digital computer, such limitations are not relevant any more. An alternative design method is the direct
control design method of Ragazzini which directly computes the controller D(z) to achieve some desired closed-loop
transfer function T (z).

9.2 THIS LAB IS. . .

• Practice using Ragazzini’s direct control design method.

• Control system design via pole-placement and prototype emulation.

9.3 BACKGROUND

9.3.1 Direct Design Method of Ragazzini

The closed-loop transfer function of a unity-feedback digital control system is

T (z) = D(z)G(z)
1+ D(z)G(z)

.

Note that we can re-arrange this expression and solve for D(z) to give this closed-loop transfer function.

(1+ D(z)G(z))T (z) = D(z)G(z)
D(z)G(z)(T (z)− 1) = −T (z)

D(z) = 1
G(z)

T (z)
1− T (z)

.

From this equation, it appears as if we can specify a desired T (z) and simply compute D(z) to achieve it! Can
control design be this simple?
In general, the anser is “not quite”. The problem is that this technique may ask for the impossible: (non-causal,
unstable . . . ). We need to impose some constraints on T (z) for the control system to be implementable.

Causality: If D(z) is causal, then it has no poles at∞ (equivalently, no zeros at the origin). Therefore, T (z) must
have enough zeros at∞ to cancel out poles at∞ from 1

G(z) . Put another way, the delay in T (z) must be at least as
long as the delay in G(z). The constraint on T (z) is then

• T (z) must have a zero at infinity of the same order as the order of the zero of G(z) at infinity.
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Stability: If G(z) has unstable poles, they cannot be canceled directly by D(z) or there will be trouble! To show
this, consider the characteristic equation of the closed-loop system

1+ D(z)G(z) = 0.

Let D(z) = c(z)/d(z) and G(z) = b(z)/a(z). Then

1+ c(z)
d(z)

b(z)
a(z)
= 0.

Let the unstable pole in G(z) be at α, so a(z) = (z − α)a(z). To cancel it, c(z) = (z − α)c(z), and
(z − α)a(z)d(z)+ (z − α)c(z)b(z) = 0

(z − α)[a(z)d(z)+ c(z)b(z)] = 0.

The unstable root is still a factor of the characteristic equation! (oops). We conclude that unstable poles may not be
directly canceled, but must be moved via the feedback mechanism. This imposes two constraints on T (z).

• [1− T (z)] must contain as zeros all the poles of G(z) outside the unit circle.

• T (z) must contain as zeros all the zeros of G(z) outside the unit circle.

Steady-State Accuracy: Finally, requirements for steady-state accuracy will impose some constraints on T (z).
Assume that the system is to be of type-I with velocity constant Kv. Note:

E(z) = [1− T (z)]R(z).

We must have zero steady-state error to a step. Therefore

lim
z→1

(z − 1)[1− T (z)]
z

(z − 1)
= 0

or T (1) = 1. Furthermore, we must have 1/Kv error to a unit ramp. Therefore

lim
z→1

(z − 1)[1− T (z)]
T z

(z − 1)2
= 1

Kv

.

Use l’hôpital’s rule to evaluate:

−T
dT (z)

dz

∣
∣
∣
∣
z=1
= 1

Kv

.

So, the final constraints on T (z) are

• T (1) = 1.

• dT (z)
dz

∣
∣
∣
∣
z=1
= − 1

T Kv

.

Any T (z) which meets these requirements for causality, stability and steady-state accuracy is one which will provide
a functional D(z).

9.3.2 Pole Placement

Now that we have this considerable tool at our disposal, we need to determine where we should place the closed-loop
poles of T (z). One possibility is to choose closed-loop poles to mimic a system that has performance that you like.
Set closed-loop poles equal to this prototype system.
Prototypes are tabulated with poles scaled to give settling time of 1 sec. or bandwidth of ω = 1 rad/sec. For example,
the following two sets of step responses have constant settling time and constant bandwidth:
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The following tables list the normalized s-plane pole locations.

Bessel pole locations for ts = 1 sec.
1: −4.6200
2: −4.0530± 2.3400 j
3: −3.9668± 3.7845 j −5.0093
4: −4.0156± 5.0723 j −5.5281± 1.6553 j
5: −4.1104± 6.3142 j −5.9268± 3.0813 j −6.4480
6: −4.2169± 7.5300 j −6.2613± 4.4018 j −7.1205± 1.4540 j

Bessel pole locations for ωo = 1 rad/sec.
1: −1.0000
2: −0.8660± 0.5000 j
3: −0.7455± 0.7112 j −0.9420
4: −0.6573± 0.8302 j −0.9047± 0.2711 j
5: −0.5906± 0.9072 j −0.8516± 0.4427 j −0.9264
6: −0.5385± 0.9617 j −0.7998± 0.5622 j −0.9093± 0.1856 j

In order to convert these pole locations to something useful, use the following procedures:
PROCEDURE: For nth-order system—desired bandwidth.

1. Determine desired bandwidth ωd .

2. Find the nth-order poles from the table of constant bandwidth, and multiply pole locations by ωd .

3. Convert s-plane locations to z-plane locations using z = esT .

4. Ensure T (z) meets design criteria and use Ragazzini to compute controller.

PROCEDURE: For nth-order system—desired settling time.

1. Determine desired settling time td .

2. Find the nth-order poles from the table of constant settling time, and divide pole locations by td .

3. Convert s-plane locations to z-plane locations using z = esT .

4. Ensure T (z) meets design criteria and use Ragazzini to compute controller.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs



ECE4560, Ragazzini’s Direct Control Design Method 9–4

9.4 PRELAB ASSIGNMENT

In this lab you will again control the two-disk MagLev in the configuration of Labs 7 and 8.

1. Recall u1o such that y1o = 1 cm; the transfer function G(s) and the transfer function G(z) from Lab 7. Use a
sampling rate of 50 Hz.

2. Design a T (z) for settling time 0.2 sec and of appropriate order (number of poles). Make sure that all the
requirements for stability, causality and steady-state error are met (choose an appropriate value of K v ).

3. Compute D(z). Simulate and plot the step response of the closed-loop system. Plot the step response of T (z).
Do they match?

9.5 LABORATORY EXPERIMENT

1. Implement your feedback control system in Simulink.

2. For a reference input equal to a unit step at time 5 sec, record your system output.

9.6 ASSIGNMENT

Report your controller design. Discuss the transient and steady-state response of your closed-loop system. How well
does the physical system correspond with your design?
This is the end of Unit 3. You have the next lab period off to give you time to write your lab report. Your formal
laboratory report covering all three labs in this unit is due at the beginning of the subsequent lab period.
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Unit 4

State-Space Controller Design

This final unit of labs focuses on digital control system design using state-space design methods. The MagLev will
be configured in a two-disk multi-input multi-output (MIMO) configuration. In:

• Lab 10 you will use state feedback to control the MagLev; in

• Lab 11 you will use output feedback to control the MagLev.

Remember that if a control-system design is properly done, testing is very fast. The majority of your time will be
spent on the Prelab assignment, designing the controller in the first place.
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State-Feedback Controller Design

10.1 INTRODUCTION

In this experiment, you will implement full multi-input multi-output (MIMO) control on the two magnet MagLev
system. The physical plant configuration is again that of the previous three labs except that now you will apply
inputs at both the upper and lower magnet locations. You will use state-feedback control design methods in order to
design the controller for this system.

10.2 THIS LAB IS. . .

• An introduction to MIMO state-space control.

• Another instance of control system design via pole-placement and prototype emulation.

10.3 BACKGROUND

10.3.1 A full MIMO state-space model of the MagLev (Continuous-time)

Linear, lumped, time invariant systems may be represented in state-space form as
ẋ(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t),

where A, B, C and D are constant matrices, x(t) is a vector function of time, and u(t) is a vector of inputs. We wish
to represent the MagLev dynamics in state-space form; that is, we must define a state vector x(t) and find matrices
A, B, C and D.
From App. B we know that the full model of the MagLev is:

mÿ∗
1 + mβ ẏ∗

1 + (k11 − k21 + km12)y∗
1 − km12 y∗2 = ku11u∗

1 + ku12u∗
2

mÿ∗
2 + mβ ẏ∗

2 + (k22 − k12 + km12)y∗
2 − km12 y∗1 = ku22u∗

2 + ku21u∗
1.

where the appropriate constants are defined in App. B.
If we define the state vector x(t) to be

x(t) =
[

y∗1 (t) y∗
2 (t) ẏ∗

1 (t) ẏ∗
2 (t)

]T
,

then we can represent the equations of motion for the MagLev in state space as

ẋ(t) =







0 0 1 0
0 0 0 1

(k21 − k11 − km12)/m km12/m −β 0
km12/m (k12 − k22 − km12)/m 0 −β







x(t)+







0 0
0 0

ku11/m ku12/m
ku21/m ku22/m







[

u∗
1(t)

u∗
2(t)

]

y(t) =
[

1 0 0 0
0 1 0 0

]

x(t).
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Therefore, the full MIMO model is:

A =







0 0 1 0
0 0 0 1

(k21 − k11 − km12)/m km12/m −β 0
km12/m (k12 − k22 − km12)/m 0 −β






, B =







0 0
0 0

ku11/m ku12/m
ku21/m ku22/m







C =
[

1 0 0 0
0 1 0 0

]

, and D =
[

0 0
0 0

]

.

10.3.2 A full MIMO state-space model of the MagLev (Discrete-time)

Recall from class that in order to convert the MagLev dynamics to discrete time, we must perform the following
computations:

Ad = eAT , Bd = A−1(Ad − I )B,
Cd = C, Dd = D.

This gives us the discrete time system
x[k + 1] = Ad x[k]+ Bdu[k]

y[k] = Cd x[k]+ Ddu[k].

The interpretation of the state is

x[k] =







y∗1 (kT )
y∗2 (kT )
ẏ∗1 (kT )
ẏ∗2 (kT )






.

10.3.3 Calculating Equilibrium u1o and u2o

We may calculate the steady-state control effort u1o and u2o for a specific operating point {y1o, y2o} by evaluating
the equilibrium equations in App. B. These give the two equations and two unknowns which may be combined into
a matrix equation:

[
1

a(y1o+b)4
1

a(13−y1o+b)4
−1

a(13+y2o+b)4
−1

a(−y2o+b)4

]
[

u1o

u2o

]

=
[

mg + c
(y12o+d)4

mg − c
(y12o+d)4

]

[

u1o

u2o

]

=
[

1
a(y1o+b)4

1
a(13−y1o+b)4

−1
a(13+y2o+b)4

−1
a(−y2o+b)4

]−1 [
mg + c

(y12o+d)4

mg − c
(y12o+d)4

]

Note that in order for the units to properly agree, a factor of 100 must be introduced:
[

u1o

u2o

]

=
[

1
a(y1o+b)4

1
a(13−y1o+b)4

−1
a(13+y2o+b)4

−1
a(−y2o+b)4

]−1 [
100mg + c

(y12o+d)4

100mg − c
(y12o+d)4

]

.

10.3.4 State feedback control via pole placement

Control of systems in state-space form uses state feedback rather than output feedback. The controller is designed
by choosing a K matrix such that

u[k] = r[k]− K x[k].

The poles of a state-space system are the eigenvalues of the Ad matrix. By employing state feedback, we change the
state equation to
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x[k + 1] = (Ad − Bd K )x[k]+ Bdr [k]

and therefore change the effective “Ad” matrix to Ad − Bd K . For many systems, we may choose K to place the
eigenvalues of Ad − Bd K anywhere we like (in complex-conjugate pairs, that is). The Matlab command place()
may be used to compute the desired K matrix.

10.3.5 Steady-state accuracy

State-space design via pole placement addresses the transient-response of the system but does not directly address
the steady-state response. For instance, it does not ensure zero steady-state error to step-like control inputs. There
are a number of ways to improve steady-state response and the simplest is discussed here (also the least accurate!).
The dc-gain of the state-space system may be calculated to be

Kdc = Cd(I − Ad + Bd K )−1 Bd + Dd .

If we multiply the reference input by the inverse of the Kdc matrix, we compensate for any aberration from unity
dc-gain.

10.4 PRELAB ASSIGNMENT

1. Determine the full state-space model of the continuous-time MagLev system. That is, fill in all numbers.

2. Convert the plant model to discrete-time. Use a sampling frequency of 50 Hz. You may use either the expm
command or the c2d command in Matlab.

3. Compute the u1o and u2o voltages for nominal operating points y1o = 1.5 cm and y2o = −2.0 cm. In this
configuration, y12o = 9.5 cm.

4. You will need to place four poles using state feedback. Use a prototype from Lab 9 and design for a settling
time of 0.5 sec. State the four desired pole locations.

5. Use Matlab’s place command to determine a state-feedback gain matrix

K =
[

k11 k12 k13 k14

k21 k22 k23 k24

]

.

6. Compute the dc-gain of your compensated system Kdc. Also compute the inverse: K −1
dc .

10.5 LABORATORY EXPERIMENT

Consider the state-feedback MIMO controller as illustrated in Fig. 10.1 on page 10–4. The state is composed for
feedback by actually measuring y∗

1 [k] and y∗
2 [k], and by estimating the derivatives ẏ∗

1 [k] and ẏ∗
2 [k] using Euler’s

backward rule:

ẏ∗1 [k] ≈ y∗1 [k]− y∗
1 [k − 1]

T
and ẏ∗

2 [k] ≈ y∗2 [k]− y∗
2 [k − 1]

T
.

The four components of the state vector are passed through a multiplexer to make the vector signal x[k], which is
multiplied by the matrix K (be sure to use a matrix gain block from the Math Panel, and not a regular scalar gain),
and demultiplexed into the two components which modify u[k]. The reference inputs are multiplexed into a single
r [k] vector, which is multiplied by K −1

dc to remove steady-state error, and demultiplexed into individual components
which are used for each control input.

1. Set the nominal operating points to y1o = 1.5 cm and y2o = −2.0 cm.
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Figure 10.1 Diagram of state-feedback MIMO system.

2. Use the plastic safety clip so that the upper magnet rests at approximately−2.5 cm. Implement your controller
(for zero reference input), and check that the system is stable and functioning properly (e.g., the magnets
are levitating at roughly their proper heights). If so congratulations! You have successfully implemented
multivariable control! Remove the plastic clip.

3. Set up the following multivariable input: Lower-disk trajectory: Pulse Generator input, 1 cm amplitude, 4 sec
period, 0 sec offset; Upper-disk trajectory: Pulse Generator input, 1 cm amplitude, 4 sec period, 1 sec offset.
Execute these two trajectories. Notice the response of the magnets and the cross coupling between them (e.g.,
how much the stationary magnet moves as the moving one changes position). Plot your commanded position
and y∗

j , j = 1, 2, data for each axis. Notice the cross coupling in the output and in which magnet positions it
is most pronounced.

10.6 ASSIGNMENT

Report all Prelab and measured Experiment results. Describe the motion of the two magnets under MIMO state-
space control from your pulse responses in terms of their relative interference when the two magnets are closest
together and when they are furthest apart. Can you see the nonlinear effect of the “spring” in the outputs? Explain.
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State Estimation and Control Design

11.1 INTRODUCTION

State feedback control is a very powerful design technique as it often allows us to place closed-loop poles anywhere
we desire. The price we pay for this power is that we must measure all of the system states. In Lab 10, measuring
the two states y∗

1 [k] and y∗
2 [k] was simple (although even these are corrupted by sensor noise). However, the state

derivatives had to be approximated by

ẏ∗1 [k] ≈ y∗1 [k]− y∗
1 [k − 1]

T
and ẏ∗

2 [k] ≈ y∗2 [k]− y∗
2 [k − 1]

T
.

State-space design may be accomplished more accurately if the state of the system is estimated using a special
circuit called an estimator or an observer. The output of the estimator is the state estimate x̂[k]. Feedback control
is accomplished via u[k] = r[k] − K x̂[k] rather than u[k] = r[k] − K x[k]. Even though a state approximation is
used, stable control is guaranteed if the original control poles were stable and the estimator poles are stable.

11.2 THIS LAB IS. . .

• Your final control design for this course, incorporating many aspects of state-space theory including state
estimation.

11.3 BACKGROUND

11.3.1 Estimator Design

We seldom measure all of the states of x[k] in order to accomplish state-feedback. Instead, we use our knowledge
of the plant dynamics and the plant input and output in order to estimate the state of the plant by simulating the plant
behavior in real-time. Let x̂[k] be our estimate of the plant state. If we feed back u[k] = r [k]− K x̂[k] the poles of
the closed-loop system are moved to the same place as if we feed back u[k] = r[k]− K x[k].
How do we design an estimator? Consider the following:

x̂[k + 1] = Ad x̂[k]+ Bdu[k]+ L(y[k]− Cd x̂[k])

where L is a n×m (number-of-states by number-of-outputs) matrix of gains chosen by the control-system designer.
Call the error between the actual state and the estimated state x̃[k] = x[k]− x̂[k]. Then, the error has dynamics

x̃[k + 1] = Ad x[k]+ Bdu[k]− Ad x̂[k]− Bdu[k]− L(Cd x[k]− Cd x̂[k])
= (Ad − LCd)x̃[k].

So, the estimator error has poles determined by the eigenvalues of the (Ad − LCd) matrix. By choosing the L
gains, we can make the estimator error converge to zero as quickly as we desire. Often, the poles of the estimator
are chosen to be slightly faster than the poles of the closed-loop plant. The estimator gain vector L is designed in
exactly the same way as the controller gain vector K , but with Ad replaced by AT

d , Bd replaced by C T
d and finally by

computing the transpose of the result. Specifically, for a set of desired pole locations des_poles,

L = place(Ad’,Cd’,des_poles)’;
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11.4 PRELAB ASSIGNMENT

1. Recall your discrete-time system model, u1o, u2o, K and Kdc from Lab 10. You will need these again.

2. You will need to place four poles for the estimator design. Use a prototype from Lab 9 and design for a settling
time of 0.1 sec. State the four desired pole locations and your estimator gain matrix L .

11.5 LABORATORY EXPERIMENT

Consider the MIMO controller with estimated-state feedback as illustrated in Fig. 11.1. The estimator at the bottom
of the figure implements

x̂[k + 1] = Ad x̂[k]+ Bdu[k]− L(y[k]− Cd x̂[k]).

The feedback is computed as u[k] = K −1
dc r [k]− K x̂[k].
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Figure 11.1 Diagram of state-feedback MIMO system.

1. Set the nominal operating points to y1o = 1.5 cm and y2o = −2.0 cm.

2. Use the plastic safety clip so that the upper magnet rests at approximately−2.5 cm. Implement your controller
(for zero reference input), and check that the system is stable and functioning properly (e.g., the magnets are
levitating at roughly their proper heights).

3. Set up the following multivariable input: Lower-disk trajectory: Pulse Generator input, 1 cm amplitude, 4 sec
period, 0 sec offset; Upper-disk trajectory: Pulse Generator input, 1 cm amplitude, 4 sec period, 1 sec offset.
Execute these two trajectories. Notice the response of the magnets and the cross coupling between them (e.g.,
how much the stationary magnet moves as the moving one changes position). Plot your commanded position
and y∗

j , j = 1, 2, data for each axis. Notice the cross coupling in the output and in which magnet positions it
is most pronounced.
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11.6 ASSIGNMENT

Report all Prelab and measured Experiment results. Describe the motion of the two magnets under MIMO state-
space control from your pulse responses in terms of their relative interference when the two magnets are closest
together and when they are furthest apart. Can you see the nonlinear effect of the “spring” in the outputs? Explain.
Compare the results of this lab with those of Lab 10. Which are better? Explain.
This is the final lab. Your formal laboratory report covering both labs in this unit is due at 5:00p.m. Thursday 10
May 2001.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs



(mostly blank)



Congratulations!

You have just completed a rigorous lab course in digital control. You have studied discrete-time simulation; two
methods of control design which emulate analog systems; effects of digital systems such as aliasing, discrete-time
models and finite-precision effects; three methods of direct digital control design; and state-space controller and
estimator design. You have implemented SISO, SIMO and MIMO controllers.
More importantly, you have implemented all these methods on a physical system. You have discovered that control
experiments focus attention on performance and implementation issues that may be overlooked and at the least are
difficult to capture by “theory.” For example:

• Control experiments highlight implementation issues (such as integrator overload, sensor noise, dynamic non-
linearities and actuator saturation) that are easy for theory to overlook.

• The difference between a “toy” control assignment and a “real” control experiment is whether the disturbance
is of your own construction or is thrown at you by Mother Nature herself, and if unmodeled nonlinear effects
are present.

• Control experiments provide a quick way to identify control methods that seem to work under real-world
conditions and those that clearly don’t.

The last item—finding what does and does not work—leads to real learning.
I hope that you have enjoyed this lab, have found it interesting, and that you have learned a great deal.

Gregory Plett

August 2002
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App. A: Magnetic Levitation Principles

This appendix gives a brief overview of key concepts in magnetism in general and magnetic levitation in particular.
It includes equations and illustrations that show how magnetic fields and forces are generated within the Model 730
apparatus and concludes with a reference section. For a more rigorous treatment of these topics, the reader is referred
to the literature listed at the end of the appendix.

A.1 Introduction

Magnetic fields are used to describe forces at a distance from electric currents. These currents are of two types:

1. Free, or Amperian, currents as drawn from a battery pack, power supply, or an electrical outlet, and

2. Bound currents as in permanent magnet materials.

The forces come in three variations:

1. An electrical current feels a force from another current,

2. A current feels a force from a permanent magnet, and

3. A permanent magnet feels a force from another permanent magnet.

This action at a distance is described by saying a magnetic field exists created by one of the bodies at the location of
the other body. The magnetic field is the medium by which the force is transferred.
In this section, a brief discussion concerning the magnetic fields caused by magnetized materials (i.e., permanent
magnets) is presented. By demonstrating that magnetic materials can be reduced to effective current distributions,
this discussion forms the basis for calculating the forces on permanent magnets. The magnetic fields due to free
current distributions are calculated next. These fields are used to calculate the forces felt by current-carrying con-
ductors. Time-varying currents cause time-varying magnetic fields. These changing magnetic fields induce electric
currents that, in turn, experience a force.
Maglev systems utilize the fundamental physics of electric currents experiencing forces-at-a-distance. These systems
are most often described in terms of the interaction of electrical current with magnetic fields. Because the masses of
the vehicles are large, large forces are required for magnetic suspension. These large forces are provided by the high
magnetic fields of either large superconducting currents or small air gaps in normal ferromagnetic circuits.
A dictionary of common terms is provided at the end of the section and a reference list is included featuring books,
Maglev studies and Maglev URLs.

A.2 Magnetic Fields & Forces

A.2.1 Magnetic Fields Caused by Magnetized Materials

Electron spin is a quantum mechanical phenomenon. Its significance here is the fact that there is associated with the
electron spin a magnetic moment of fixed magnitude. To determine the forces on magnetic materials, we use the fact
that the magnetic moment of the electron spin acts as if it is a current loop.
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A volume of magnetized material contains a very large number of aligned electron spins. This is illustrated schemat-
ically in the figure below. A grid pattern was superposed onto the material to indicate small volumes of materials
which can be analyzed discretely.

PSfrag replacementsdz
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The figure below isolates two small volumes. The one on the left generates a magnetic field due to its magnetic
moment, m. The one on the right generates a magnetic field by virtue of the current wrapping the volume (this is
commonly referred to as a “current sheet.”), and otherwise ignores the presence of the magnetic material. The two
magnetic fields are entirely equivalent (external to the material). The material property M describes the strength of
the magnetic material and the amount of current required per unit distance of height. The parameter K describes the
current per unit height within the current sheet. For modern high performance neodymium-iron-boron permanent
magnets, K ≈ 900, 000 amps/meter.
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Equivalent as sources
of magnetic field

Assembling many small volumes in juxtaposition, one can see in the figure below the result of substituting the
current loop for the magnetic material; the internal currents cancel while the surface currents do not cancel. Hence,
no matter the shape of the material, the external magnetic field can be exactly reproduced by a current stripe along
the material perimeter. (This is true if the magnetization is uniform. If the magnetization is uniform then the currents
are equal and cancel. If the magnetization is not uniform, then the equivalent current distribution can be calculated
by J = ∇ × M , where J is the volume current density.)
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In summary, the magnetic field of a uniformly magnetized permanent magnet can be exactly reproduced by a current
sheet along the perimeter. This equality is indicated graphically in the figure below. The magnitude of the current is
proportional to the material thickness with the constant of proportionality dependent upon the material itself. This
equivalence of magnetic fields is commonly exploited to calculate the forces on permanent magnet materials.
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A.2.2 Calculating Magnetic Fields

The Biot-Savart Law is the fundamental relationship between current and magnetic field:
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d EB = µ

4π
I dEl × Er
Er 3

, (A.1)

where,

d EB =differential magnetic field, tesla,

µ =permeability, Henry/m,

I =current, amps,

dEl =differential length of current-carrying element, m,

Er =vector distance from current element to field point, m.

Two simple geometries for calculating the magnetic field are an infinitely long, straight conductor and a circular loop
of conductor.

Straight Conductor

For the straight conductor carrying current upwards along the y-direction, the magnetic field can be calculated at any
point due to a differential current element as:

d EB = µ

4π
I dEl sin θ

r2
, (A.2)
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By integrating along y from −∞ to∞, the result is:

B = µI
2πR

,

where the direction of the magnetic field is determined by the right hand rule (point the thumb of the right hand
along the direction of current and the fingers curl in the direction of the magnetic field).

Circular Loop at Center

The magnetic field at the center of a circular loop of wire can also be calculated from the Biot-Savart Law. In this
case, the angle between the current element and field point is a constant (90◦) so the vector cross product always
yields unity. Then the magnetic field is:

d EB = µ

4π
I 2πR

R2
= µI

2R
. (A.3)
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Circular Loop Anywhere Along Axis

The magnetic field along the axis of a circular loop of wire can also be calculated from the Biot-Savart Law. In this
case, the angle between the current element and field point is still a constant (90◦) so the vector cross product always
yields unity. The net magnetic field from any current element has vertical and horizontal components. However,
as the current element follows the conductor path, the horizontal components of the field cancel while the vertical
components add. Then the axial magnetic field is:

Bz =
µ

4π
I 2πR

z2 + R2
cosα = µI R

2(z2 + R2)

R√
z2 + R2

= µI R2

2(z2 + R2)3/2
. (A.4)PSfrag replacements

R
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dEl

I

I
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Due to the common occurrence of circular coils, this relationship is very important. Along the axis the magnetic
field is purely vertical. For values of height, z, above the plane of the coil, which are small compared to the radius,
R, (z ¿ R) the vertical magnetic field is insensitive to z. This is due to the finite radius of the coil. For heights z
much larger than R (z À R) the axial field decreases as the reciprocal third power of height. Off-axis, the radial
magnetic field decreases as the reciprocal fourth power of height.

Calculating Magnetic Forces

The force between current carrying conductors is given by the Lorentz Law:

d EF = I dEl × EB, (A.5)

where, d EF =differential force, in Newtons.
One simple geometry for calculating the magnetic force per unit length is two infinitely long, straight conductors
parallel to each other.

F
l
= −µI1 I2

2πR
.

The negative sign means the two parallel currents attract one another. If the direction of one of the currents were
to be reversed (anti-parallel currents), the force would also reverse, and the currents would repel. Reversing both
currents, of course, once again produces an attractive force.

PSfrag replacements R

d EB
(into page)

I1 I2

To evaluate the magnetic field at off-axis points, the same formula (A.1) can be used. The mathematics quickly
becomes intractable and the solution is usually implemented numerically. Alternatively, specialized computer aided
design software can be used to calculate the magnetic field at arbitrary points in space. The two methods approach
the calculation differently (the former is the idealized magnetic field numerically approximated while the other is
the high fidelity numerical model of the detailed system). Either method will, of course, yield the same result.
The force due to a current-field interaction off-axis can be calculated according to (A.5). Thus, in the case of a
Neodymium Iron Boron permanent magnet positioned above a coil, the magnet can be modeled as a current sheet
of thickness equal to that of the magnet. This “current” creates a magnet field at the location of the coil conductors.
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The force on the coil and, by Newtons third law, the force on the magnet is simply the product of the magnetic field,
current and conductor path length.
Since the equivalent current of the permanent magnet is in the theta direction (circumferential around the magnet),
the vector cross product in the force equation suggests that to get an axial force, Fz we must have a radial magnetic
field, Br (−ẑ = θ̂×r̂). In developing the control system, it is convenient to express the radial magnetic field equation
in the following form:

Br =
c1

(z + c2)N
,

where c1 and c2 are constants depending upon the geometry of the permanent magnets and N is a parameter de-
scribing the decrease in magnetic field with increasing axial distance. For the case of the axial magnetic field, we
saw above c1 is the surface current density multiplied by the magnet thickness, c2 is related to the square of the
magnet radius, and N is three or less, depending upon the relative axial distance. The radial magnetic field decreases
more rapidly with distance than the axial magnetic field by approximately one more power of the denominator:
3 < N < 4.1

In order to suit the control law, the following form of the force equation for a magnet-coil interaction is sought:

F = K
(z + D)N

· I
Imax

.

The various magnet-coil interactions have been analyzed and the appropriate constants have been determined. Be-
cause of the inherent non-linearity of magnetic fields, these constants can vary when the excursion from the calcu-
lated system is large; that is, the equations have been approximated by constant parameters in the region of interest.
That is, at very large axial heights or very low heights the constants will differ from those calculated.
The form of the force is the same for interactions between permanent magnets due to the equivalent current concept
discussed above. In this case, however, the current is not a free parameter for control but is determined by the
geometry.

Calculating Induced Currents

A time-varying magnetic field induces voltages in a closed loop according to Faraday’s Law:

V = −Nt
∂φ

∂t
,

where,

V is the induced voltage around a closed loop,

Nt is the number of turns of conductor around the loop, and,

∂φ/∂t is the flux rate of change through that loop.

The negative sign in Faraday’s Law is the manifestation of Lenz’s Law. Lenz’s Law states that when currents are
induced in bodies due to a changing magnetic field, the currents are in such a direction as to cancel the change
in magnetic field experienced by the body. For instance, if no field is present and suddenly a field is applied, the
induced currents tend to circulate to cancel the magnetic field. If, however, the magnetic field has previously existed,
removal of the magnetic field causes currents to flow in an attempt to maintain the field.
Consider a single current-carrying conductor moving relative to a conductive sheet. It can be shown [Magneto-Solid
Mechanics, pg. 339 ff] that there is a characteristic velocity of the motion, w:

w = 2ρ
µ0t

,

1In evaluating specific geometries and using numerical curve fitting, exponents of value N > 4.0 can result. For the Model 730 Apparatus,
N ≤ 4.3.
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where, ρ is the sheet material resistivity, t is the thickness of the sheet and µ0 is the permeability of free space. At
standstill, the magnetic field of the current will fully permeate the sheet conductor. The magnetic field lines will be
perfect circles about the current center. At very low speeds, (v ¿ w) the field still permeates the sheet and the field
lines will still be very nearly circular. This situation in shown in the figure below, the induced current in the sheet is
K amps/meter.
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As the conductor speed is increased to approximately the characteristic velocity (v ≈ w), the movement of the
magnetic field through the sheet causes induced currents to flow. According to Lenz’s Law, these currents flow in
such a manner so as to cancel the effect of the approaching field. Nevertheless, due to finite resistance, the magnetic
field will still penetrate the conductive sheet to an extent and as the conductor leaves the region of magnetic field
additional currents are induced to maintain the presence of the field. This situation is shown in the figure below.
Notice the shear effect of the motion on the magnetic field.
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When the speed is increased to substantially above the characteristics velocity, the conductivity of the sheet prevents
the magnetic field from any significant penetration. The conductor is moving sufficiently fast that significant resistive
dissipation does not occur. Each section of sheet generates the exact required current to perfectly shield the interior
of the conductive sheet from the magnetic field. This situation is shown in the figure below. Notice that the magnetic
field lines do not enter the sheet.
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For application to the demonstration unit, the current element is the equivalent current of the permanent magnet
edge. The permanent magnet flying above a rotating conductive sheet introduces several details different from that
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described above. The physical principle remains the same; that is, the currents are induced in the sheet in response to
the apparent change in magnetic field, and these currents tend to cancel the change in magnetic field. The interaction
of the (magnetic field from) the induced currents and the original permanent magnetic field produce a repulsion force
which levitates the magnet. These fundamentals are the basis of several different configurations of Maglev systems.

A.3 Maglev Applications

The figure below shows six arrangements used in magnetic levitation of moving vehicles. Five of the arrangements
rely on repulsive forces. The lower elements are fixed (say, with respect to the earth) and the upper elements levitate.
The first arrangement (permanent magnet like poles) is the common one for demonstrating like magnetic poles
repel. The second and fourth arrangements (permanent magnet and/or superconducting magnet flying over a normal
copper lower coil) is similar to that used for the Japanese superconducting Maglev system. The third and fifth
systems are similar to the Magneplane system where permanent magnets or superconducting coils fly over normal
sheet conductor. Notably, this has been variously proposed as an inexpensive method to attain levitation.
The sixth arrangement (electromagnet under a ferromagnet) is quite different and is the basis for the German Tran-
srapid Maglev system. The fixed element is the upper ferromagnetic material and the lower electromagnet is actively
controlled. If the current in the electromagnet is too large, the electromagnet feels a net upward force until it contacts
the ferromagnetic material. If the current is too small, then insufficient force is available and the electromagnet falls.
Hence, the current in the electromagnet must be continuously adjusted to enable levitation without contact.
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For applications involving moving vehicles, all maglev designs share a common trait: while generating magnetic lift
(in the direction perpendicular to travel) there is also generated magnetic drag (opposing the direction of travel). The
details of the lift and drag forces, of course, depend upon the configuration.

A.4 Reference

News Item: 14 April 1999 Japanese Maglev vehicle demonstrates top speed of 552 km/hr (345 mph).

A.4.1 Current Status of Maglev in the United States and Internationally

Superconducting Maglev technology was initiated in the late 1960s and early 1970s in the United States in 1969
when Drs. James Powell and Gordan Danby of New Yorks Brookhaven National Laboratory invented the concept
of a repulsive magnetic suspension using superconducting magnets. In the mid-1970s the US stopped Maglev
development due to funding problems. Other countries, however, continued to develop Maglev and today have
viable systems. In the early 1990s Maglev research was rekindled at a Federal government level. At various times,
the Department of Transportations Federal Railroad Administration and Federal Transit Administration, NASA,
Department of the Air Force, and Department of the Navy have joined resources for the purpose of developing
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Maglev and Linear Motor technology. Although each agency had its own specific application in mind, a loose
consortium seemed to provide the best bang for the buck. The situation has progressed where today there are several
high speed (≈ 300 mph) and low speed (≈ 100 mph) regions in this country where Maglev is thought to be a viable
alternative means of rapid public transportation—yet it is still unproven in the United States.
Germany’s Transrapid vehicle has been extensively tested and has been proposed for use on several projects in this
country. The Germans are presently constructing a Transrapid route from Hamburg to Berlin.
Japan is developing a system that uses superconducting magnets and is currently constructing a major test route that
will ultimately be incorporated into a revenue-producing route. Approximately 80% of this system will be in tunnels
cut into mountains. This has greatly increased the construction cost but has decreased the cost of land acquisition
for the Maglev right-of-way.

A.4.2 Glossary

Eddy Currents: Induced currents in conductors by changing magnetic fields. Since the currents flow in closed
paths within the materials, they are similar to eddies in rivers. In accordance with Lenz’s Law, these currents
flow in such a manner as to oppose the change in magnetic field inducing them. Frequently, eddy currents are
undesirable, but they can be desired in cases of induction and microwave heating for industrial and consumer
purposes.

EDS: Electrodynamic System

Electrodynamic System: Magnetic forces based upon repulsion from induced currents. Inherently stable can be
lightly damped or even negatively damped at sufficiently high frequencies.

Electromagnetic System: Magnetic forces based upon attraction from applied currents. Inherently unstable and
currents must be controlled.

EMS: Electromagnetic System

HSST: High Speed Surface Transportation (not as high speed as the name sounds). Japanese EMS Maglev.

Inductance, L: L = Ntφ/I , Total flux linked per unit current. Units are Henries, H.

Maglev: Generic term for magnetic suspension. Sometimes refers to both levitation (vertical forces) and guidance
(side-to-side forces).

Magnetic Drag: Magnetic force opposing propulsion, due to resistive dissipation. Units are Newtons.

Magnetic Field, H: Three-dimensional vector used to calculate the enclosed current as used in Ampere’s Law ∇ ×
H = µ0 Jfree. This parameter is independent of the material properties. Units are Amperes/meter, A/m.

Magnetic Flux Density, B: Three-dimensional vector used to calculate the force on conductors and magnetic ma-
terials. Units are Wb/m2 or Tesla, T. ∇ × B = µ0(Jfree + Jbound). Recall also F = I dl × B.

Magnetic Flux, φ: φ =
∫∫ EB · d EA, the integral of the vector dot product of the flux density and area. Units are

Webers, Wb.

Magnetic Lift: Magnetic force opposing gravity.

Permeability: µ = B/H, Ratio of flux density to magnetic field. Units are Henries/meter, H/m.

Reluctance: Ratio of total magnetomotive force to total flux through a circuit. Units are inverse Henries, H−1.

RTRI: Railway Technical Research Institute. Japanese research arm to develop EDS Maglev.
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Superconductivity: The material property of the complete lack of electric resistance, obtained for special materials
only under conditions of refrigeration. Two classes of materials are low critical temperature superconductors
(T ≤ 10K )and high critical temperature superconductors (HTSC) (T ≤ 77K ).

Transrapid: German EMS Maglev, Hamburg to Berlin route under construction.

Magnetomotive force, mmf: MMF =
∮ EH · dEl = Nt I . Intermediate quantity used for magnetic circuits. Concep-

tually similar to the electromotive force or voltage of an electric circuit. Units of mmf are Ampere-turns.

Lenz’s Law: A law stating that induced currents resulting from a change in magnetic field are in such a direction
as to oppose the change in magnetic field. Hence, if a magnetic field is increased, current is induced to cancel
it. If the magnetic field is decreased, current is induced to preserve it.

A.4.3 Reference Literature:

Books

1. Superconducting Levitation: Applications to Bearings and Magnetic Transportation, Francis Moon, Wiley &
Sons, New York, 1994.

2. Case Studies in Superconducting Magnets: Design and Operational Issues, Yukikazu Iwasa, Plenum Press,
New York, 1994.

3. Magneto-Solid Mechanics, Francis Moon, Wiley & Sons, New York, 1984.

4. Electromagnetic Levitation and Suspension Techniques, B.V. Jayawant, Edward Arnold Publishers, London,
1981.

5. Electromagnetics, J.D. Kraus, McGraw Hill Companies, New York, 1992, p. 288.

6. Electricity & Magnetism, E. Purcell, McGraw-Hill Book Companies, New York, 1965.

Maglev Studies

1. “Study of Japanese Electrodynamic Suspension Maglev Systems,” J.L. He, D.M. Rote, H.T. Coffey, Argonne
National Lab, Argonne, IL, 60439, April 1994.

2. “New York State Technical and Economic Maglev Evaluation,” Michael Proise, Grumman Space and Elec-
tronics Division, New York, June 1991.

3. “Electrodynamic Suspension and Linear Synchronous Motor Propulsion for High Speed Guided Ground
Transportation,” David Atherton, Canadian Maglev Group, CIGGT Report No. 77–13, September 1977.

4. “Conceptual Design and Analysis of The Tracked Magnetically Levitated Vehicle Technology Program Re-
pulsion Scheme, Volume I—Technical Studies, Ford Motor Co., US DOT/FRA, Report PB247931, Feb. 1975.

Maglev Web Sites

1. http://bmes.ece.utexas.edu/~jcamp/physics/index.htmlDescriptive link of Maglev tech-
nologies and basic physics.

2. http://eb-p5.eb.uah.edu/maglev/maglev.html Univ. of Alabama Huntsville College of Engi-
neering WWW Archive and Information service for High Speed and Automated Transportation Technologies.
(This site is relatively new and has unfinished links.)

3. http://www.rtri.or.jp/ RTRI Home page. Japanese EDS Maglev.

4. http://www.mvp.de/english.htm Transrapid Official Homepage. German EMS Maglev.
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5. http://weber.u.washington.edu/~jbs/itrans/hsst.htm HSST unofficial descriptive page.

6. http://www.meitetsu.co.jp/chsst/mecha.html Mechanism of HSST. Japanese EMS.

7. http://popularmechanics.com/popmech/sci/9805STTRP.html “Track to the Future” arti-
cle. Descriptive article of one recent Maglev approach.

8. http://www.llnl.gov/str/Post.html “A New Approach to Levitating Trains—and Rockets.” Elab-
oration of the previous link for a Maglev approach.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs



ECE4560: Digital Control Laboratory. B–1

App. B: The Control-Systems Laboratory

B.1 THE LABORATORY1

The Control-Systems Laboratory comprises four student workstations, each having a computer and one or more
devices to control.

B.1.1 The Lab Computers

The lab computers are Pentium-III 700 MHz machines which include special hardware for data I/O. The computers
run the Real-Time Linux operating system. No previous student knowledge of Linux is expected.
When the computers are turned on, a log-in screen will be displayed. Enter the class username and password:

Username: ece4560

Password: ece4560

(real secure, huh?) It is NOT wise to save information permanently on the lab computers. When you log on, the
screen shown in Fig. B.1 on page B–2 will appear.
You will use Matlab extensively. You can start Matlab by clicking on the Matlab icon to the left of the screen. Once
started, Matlab will run as it does on an NT machine. In particular, “print” will print; “edit” will edit a file, and
so forth.
You can easily “link” your ECEDOMAIN NT account to the lab computer. Click on the “NT network” icon to the
left of the desktop. Enter your NT username and password and click on “OK”. This will load your NT account. You
can read and write files to your account just as you would write to this directory. Note that the mechanism to link
your NT account to the lab computer is not particularly secure. Use at your own risk.
To log out, click on the “X” in the menubar at the bottom of the desktop, or select “Logout” from the “K” menu in
the same menubar.

B.1.2 The Devices to Control

The lab experiments will focus on one physical device to control—the the Magnetic Levitation (MagLev) device.
The lab also has Control Moment Gyroscope devices which will be used in other control courses. These two devices
are depicted in Fig. B.2.
Some cautions are in order for the safety of the equipment:

1. Do not touch the glass rod on the MagLev system. Oils break down the lubricant in the magnet bush-
ings, increase friction and decrease the lifetime of the equipment.

2. Do not touch the white surface of the magnets. The surface must be clean for proper functioning of the
laser sensor.

1The Control-Systems Laboratory has been made possible by a grant from the National Science Foundation directorate of undergraduate
education.
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To access files on the
local hard disk

To access your
NT files

To start
Matlab

To log out

To access files 
on your floppy disk

Figure B.1 Desktop screen.

Figure B.2 The two lab devices. The MagLev device is to the left; the Gyro device is to the right.
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3. Do not get magnetic (i.e., computer) media near the MagLev magnets. The magnets are extremely
strong and will erase computer media. You have been warned.

4. Do not attempt to move the Gyro axes manually. These devices have “brakes” which are activated when
the device is off and when switches on the control box are turned on. These brakes will quickly wear out if
forced.

B.2 Matlab, Simulink, RTW, RTLT

B.2.1 Simulink

To start Simulink, you start Matlab, and then enter “simulink” at the Matlab “>>” prompt.

>> simulink

Simulink operates the same way on the lab machines as it does on an NT machine.

B.2.2 The Real Time Workshop

The Real Time Workshop (RTW) is a part of Matlab which interfaces Simulink with the “real world.” Simulink by
itself allows simulation of dynamic systems. With the Real Time Workshop, however, you can include physical
devices inside the “simulation”. Signals from your Simulink block diagram may be output through digital to analog
(D2A) converters, and external signals may be read into your Simulink block diagram through analog to digital
(A2D) and optical encoder inputs.
The Real Time Workshop can operate with many different input-output (I/O) platforms, some having their own DSP
on board to run the resulting code. The setup in the lab uses the ServoToGo Model 2 I/O board, which includes eight
A2Ds, eight D2As, and eight quadrature optical encoder inputs (and a variety of digital I/O and other features we
will not use). Many of these features are connected to the breakout box next to the computer so that you can simply
wire up experiments using banana plugs.
The ServoToGo I/O board does not have its own DSP, so the real-time software must run on the lab computer’s own
Pentium CPU. The Real Time Workshop, in conjunction with a piece of software called the Real Time Linux Target
(RTLT) (by Quality Real Time Systems), automatically generates C code to implement your Simulink diagram,
compiles the C code into executable code, and runs the code on the Pentium CPU in the computer. The Real
Time Linux operating system is used because it guarantees performance required for real-time processing of control
algorithms and data I/O.
The beauty of this arrangement, used frequently in industry to test and prototype control systems, is that you can
test controllers in a “hardware in the loop” configuration without ever coding an interrupt service routine or writing
a single line of C or assembler code! (much less, debugging same) Designs may be prototyped rapidly resulting in
great economies of time and money. You will see that there is a learning curve the first time you use this particular
scheme, but afterward it becomes completely natural.

B.2.3 Using the Real Time Workshop

In order to use the Real Time Workshop, you must know how to construct a Simulink block diagram containing
RTW elements, be able to set all parameters for these elements and for Simulink/ RTW, and be able to properly
compile/build the code and run it. These topics are discussed in the following sections.
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Figure B.3 The rtlib library.

Creating the Real Time Model

In order to start using the Real Time Workshop, in the Matlab window type

>> rtlib

“rtlib” (Fig. B.3) is a Simulink library file containing blocks useful for I/O.

You can drag a desired block into a Simulink model you are working on, and then make the necessary connections.
In the rtlib library there are four A2D input blocks. These are actually identical except that their settings have
been preset to correspond to the four A2D inputs on the MagLev side of the breakout box. The top set of banana
plugs on the breakout box is A2D1 (channel 0) and so forth through to the bottom set which is A2D4 (channel 3).
A2D1 is generally used as the input from the sensor on the bottom coil; A2D2 is generally used as the input from
the sensor on the top coil. The other two inputs are the temperature readings of the two coils, and may be used to
provide more accurate sensor calibration when the sensor heats up.
There are four D2A output blocks. Again, these are identical except that their settings have been preset to correspond
to the four D2A outputs on the breakout box. D2A1 (channel 0) and D2A2 (channel 1) correspond to the MagLev
drive coils (bottom and top, respectively). D2A3 (channel 2) and D2A4 (channel 3) correspond to the Gyro D2A1
and D2A2 on the breakout box, and are used to drive Axis 1 and Axis 2 of the Gyro.
The final block in the window is the hardware adapter block. The HW Adapter block must be part of your
Simulink diagram, and is not wired to anything else. Its presence alone is enough to let Simulink/ RTW/ RTLT
know which board is being used. By double clicking on the Hardware Adapter block, you can access its properties;
the only one which you might consider changing is the sampling frequency. A value of 2 kHz should be sufficient
for all lab purposes.

The A2D Converter Blocks: The parameters of the A2D converters may also be changed by double clicking
on the block in your Simulink diagram. The window in Fig. B.4(a) will be displayed. If you selected the correct
block from the rtlib menu, you should never need to change a parameter in this window. If you pulled the wrong
block off for the desired channel, you may change the input channel number in this window. For convenience, the
associations between channel number and breakout-box labeling are repeated here:
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(a) A2D parameters. (b) D2A parameters.

Figure B.4 I/O Box Parameters.

Channel Breakout Box Typical Use
A2D Channel 0 MagLev A2D1 Bottom Coil Sensor
A2D Channel 1 MagLev A2D2 Top Coil Sensor
A2D Channel 2 MagLev A2D3 Bottom Temp Sensor
A2D Channel 3 MagLev A2D4 Top Temp Sensor

The D2A Converter Blocks: The parameters of the D2A converters may be changed by double clicking on the
block in your Simulink diagram. The window in Fig. B.4(b) will be displayed. If you selected the correct block from
the rtlib menu, you should never need to change a parameter in this window. If you pulled the wrong block off
for the desired channel, you may change the input channel number in this window. For convenience, the associations
between channel number and breakout-box labeling are repeated here:

Channel Breakout Box Typical Use
D2A Channel 0 MagLev D2A1 Bottom Coil Drive
D2A Channel 1 MagLev D2A2 Top Coil Drive
D2A Channel 2 Gyro D2A1 Axis 1 Motor Drive
D2A Channel 3 Gyro D2A2 Axis 2 Motor Drive

The Encoder Input Blocks: We will not require encoder input blocks for this lab course. The encoder inputs
are used when controlling the gyroscope unit.

Setting the Real-Time Options

There are a number of options, buried deep in a series of menus, which must be set before you can properly build
and run your code. Most of these options have already been set properly for you if you use the template.mdl
file as instructed. There are still some parameters which you must set, and these are located in the “solver page”.

Solver Page: To access this page, you must select Solver in the Simulation Parameters property sheet (Fig. B.5
on page B–6). Before being able to use your model, you must set the fixed-step solver step size: you must click on
the pop-up menu next to Type under Solver options group title and select “fixed-step”. An appropriate value for the
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Fixed step size edit box is the sampling period. Thus, if the control algorithm is executed at 2 kHz, then you should
set the Fixed step size edit box to “0.0005”.

Figure B.5 The Solver property sheet.

Currently, the software does not support multi-tasking; hence, the Mode pop-up menu must be set to “Single Task-
ing”. You can also set the Start time and Stop time by accessing the appropriate edit boxes under the Simulation
time group title. By default these values are set to “0.0” and “10.0”, respectively.
There are some correspondences between values in this solver page and other values entered elsewhere which must
be observed. If they are not (at best) error messages or (at worst) chaos will ensue:

Correspondences
Solver: Fixed step size ⇐⇒ HW Adapter: Sampling rate
Solver: Stop time ⇐⇒ Scope Properties: Time range

Building the Real-Time Model

From the prior discussion, you should be able to construct a Simulink block diagram including physical I/O and be
able to set all necessary parameters. It remains to see how to run the resulting simulation and view the output (log
data). Here we discuss data logging.
When using RTW/ RTLT, data logging is accomplished only via the scope block. The standard Simulink X-Y Graph,
Display, To File and To Workspace blocks are not supported. In order to display or log any simulation result,
a scope block must be used.
Several signals may be displayed on the same scope graph using the Mux block.

Sine Wave

Scope

Repeating
Sequence

For the purpose of logging data to a file, signals may be given names. You can do this by double clicking on the line
that connects the variable to the scope. Enter a valid variable name (no spaces are allowed). If you do not specify a
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name, the default Simulink variable name (e.g., “root_Gain1”) will be used. A very subtle point is that output signals
of subsystems must be labeled inside the subsystem in order for the variable name to stick.

In1 Out1

SubSystem Scope

varoutside 1
Out1

1
In1

varinside

In the above figure, the block diagram on the right constitutes the subsystem in the block diagram on the left.
Contrary to intuition, the variable name of the logged data is “varinside” not “varoutside”.

Configuring the Scope: In order to configure the Scope, you must double click on the Scope block in the
Simulink model (Fig. B.6(a)). The Properties button in the Scope toolbar is used to access the scope properties. In
the General page (Fig. B.6(b)) the Number of axes refers to the number of subplots in the scope; the Time Range
specifies how many seconds of real time are displayed on the scope; the Decimation box may be used to plot every
n data samples for faster plotting/ printing.

Properties

(a) Scope window (b) General scope parameters

Figure B.6 Scope parameter pages.

Options for Viewing Data: To set the data logging options, you must access the External Mode Control Panel
from your model’s Tools menu. You can then access the External Signal & Triggering property sheet (Fig. B.7)
by clicking on the Signal & Triggering button. Under the Signal selection group title, you can click on the Select
all button to select all the scopes, or highlight the scope that you want to access and then enable the on check box.
If no data is logged from your simulation run, you have most likely forgotten to perform this step! A scope is
selected if an “X” appears in the leftmost column under the Signal selection group title. The Source pop-up menu
under the Trigger group title should be set to “manual”. The Mode pop-up menu should be set to “one-shot”. The
Delay edit box is usually set to 0.
The Duration edit box specifies the number of time intervals for which the external mode logs data after logging
starts. The value of the Duration edit box is equal to (stop time−start time)/(Fixed step size). For example, if you
execute a real-time model at 2 kHz for 60 seconds and desire to log data for the entire 60 seconds, then Duration is
set to 120000.
You should enable the Arm when connect to target check box.

Saving Simulation Data to Disk: Simulation data may be saved automatically to a file in a “.m” file format.
This is accomplished via the data archiving option of the scope block(s). To set the data archiving options, you
must access the Tools menu External Mode Control Panel. Click on the Data archiving button to open the
Data Archiving property sheet (Fig. B.8 on page B–8). Highlight the Enable archiving check box to activate the
automated data archiving feature of the external mode. If the Enable archiving check box is disabled, no log file
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Figure B.7 External Signal and Triggering property sheet.

will be created. If the check box is enabled, you must provide a valid Directory name and a File name for archiving
purposes. If the Increment file after one-shot check box is enabled, the filename will be automatically incremented
after each run. (You must re-build your model after changing any information in this property sheet for the changes
to take effect.)

Figure B.8 Data Archiving property sheet.

To load the archived data after a simulation run, if your log file was called “logfile.m” then in Matlab type

>> clear; logfile

and your data will be loaded under the variable names assigned to the signals. The “clear” command ensures that
previous Matlab variables are cleared before you load the log file.

Building and Executing the Real-Time Model

Building the Model: In order to run your Simulink model in real time, you must first build the code. Select
RTW Build from the Tools menu. RTW/ RTLT will then perform the following steps:

1. RTLT creates <model_name>.c and <model_name>.h source files, and the configuration file
<model_name>_cfg.cfg.
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2. The build command for real-time applications (make-rtw) is issued which creates <model_name>.mk
makefile from the template file (lrt.tmf).

3. The make utility (nmake) builds the <model_name>_rtl.o real time target using the makefile created in step 2.

If there are any errors in the Simulink model or an RTLT setting, a dialog box will appear with warnings and errors. If
there are no errors, then you are ready to execute the real-time target. Note that every time you change your model
you will need to re-build its code (If you just change a parameter value of a block, this may not be necessary. It is
always safest to do so, however).

Executing the Model: To execute the real-time target, you connect to it by accessing the Tools menu from
the Simulink model menubar and then selecting External Mode Control Panel from the pull-down menu. In the
External Mode Control Panel, you click on the Connect button.

The window changes (button labels change):

To begin execution, you then click on the Start real-time code button. The window changes once again:

To stop execution of the real-time target, you can click either the Stop real-time code button or the Disconnect
button.
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B.3 Nonlinear Dynamic Model of MagLev System

B.3.1 Description of the system

Two views of the magnetic levitation system are depicted in Fig. B.9. The plant consists of upper and lower drive
coils that produce a magnetic field in response to a dc current. One or two magnets travel along a precision ground
Pyrex glass guide rod. By energizing the lower coil, a single magnet is levitated by a repulsive magnetic force.
As current in the coil increases, the field strength increases and the levitated magnet height is increased. For the
upper coil, the levitating force is attractive. Two magnets may be controlled simultaneously by stacking them on the
glass rod. The magnets are of an ultra-high field strength rare earth (NeBFe) type and are designed to provide large
levitated displacements to clearly demonstrate principles of levitation and motion control.
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Figure B.9 Two views of the magnetic levitation system.

Two laser-based sensors measure the magnet positions. The lower sensor is typically used to measure a given
magnet’s position in proximity (≈ 8 cm range) to the lower coil, and the upper one for proximity to the upper coil.
The sensor design utilizes light amplitude measurement and includes special circuitry to desensitize the signal to
stray ambient light and thermal fluctuations.
For many control scenarios, the system will be configured as shown in Fig. B.10 on page B–11. A controller is
connected to the MagLev through a power amplifier. The amplifier has input voltage range −10 to 10 volts, and
outputs current in the appropriate range to drive the electromagnetic coils. The amplifier also buffers the sensor
signal from the plant. When a computer is used as controller, it is connected to the amplifier box via a “breakout
box” which provides the appropriate input and output signals via banana plugs.
One or more magnetic disks may be placed on the Pyrex rod and levitated. Fig. B.11 on page B–11 shows a diagram
of the disk. A dry-lubricated guide bushing at the center of the disk slides up and down the rod. A white reflective
surface covers most of the disk. A “N” or “S” label identifies the polarity of a particular side of the disk.
The sensor makes use of the reflective properties of the disk surface. The laser sensor is depicted functionally in
Fig. B.12 on page B–11. The monochromatic, coherent laser beam is spread via a single hemicylindrical optical
element into a fan shape. This beam is projected on the diffuse white surface of the magnet. A photodetector
views the beam and generates a voltage proportional to the amount of beam power incident on it. The white surface
properties and laser/detector view factors and geometries are designed to maximize the sensor gain slope (change in
output versus change in position) through the sensor operational range of about 8 cm.
Because of the fan beam shape and the fact that the reflected light is a combination of specular and diffuse, the power
on the detector diminishes with the inverse and inverse square of the magnet distance. Additionally, the geometry
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Figure B.12 Functional diagram of laser sensor.
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of the laser, detector, and magnet and the resulting cutoff of the detector’s view of the beam as a function of magnet
height give rise to a linear dependency at small magnet distance. These relationships are used to motivate the general
form of the sensor linearization function as discussed later.
Electronic circuitry makes the design immune to stray light noise, such as turning room lights on and off, and rejects
most induced electronic disturbances. Thus a relatively low noise signal is output from the amplifier box.2

B.3.2 Making a Mathematical Model

We wish to determine a mathematical model of the MagLev system. To do so, free-body diagrams for the MagLev
apparatus in two configurations are shown in Fig. B.13. We will consider the double-magnet configuration. Each
magnet is acted on by forces from both drive coils, from the other magnet, from gravity, and from friction (modeled
as viscous). In the diagram, y1 is the position of the lower magnet, y2 is the position of the upper magnet, yc is the
maximum magnet separation, i1 is the current into the lower coil and i2 is the current into the upper coil. All other
labels refer to forces operating on the magnets. From the figure, we have an equation of motion for the first magnet

mÿ1 =
∑

Forces on disk 1
mÿ1 = Fu11 + Fu21 − Fm12 − c1 ẏ1 − mg.

S

S
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N
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Figure B.13 Force diagrams for the MagLev device in two configurations.

Similarly for the second magnet

mÿ2 =
∑

Forces on disk 2
mÿ2 = Fm12 − Fu22 − Fu12 − c2 ẏ2 − mg.

The magnetic force terms are modeled as having the following forms (see Appendix A for details)

Fu11 =
i1

a(y1 + b)N
Fu12 =

i1

a(yc + y2 + b)N
Fm12 =

c
(y12 + d)N

Fu22 =
i2

a(−y2 + b)N
Fu21 =

i2

a(yc − y1 + b)N

2A laser temperature signal is also output. This may be used to compensate for the laser’s inherent reduction in emitted power as a function
of temperature (approx. 15% maximum for operational temperatures of the MagLev device).
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where the actual magnet separation y12 is
y12 = yc + y2 − y1, yc ≈ 13.0 cm

and a, b, c, d , and N are constants which may be determined by numerical modeling of the magnetic configuration
or by empirical methods. Typically 3 < N < 4.5. The maximum magnet separation may be found by measurement
to be yc ≈ 13.0 cm.

B.3.3 Equations of Motion for the Double-magnet Configuration

For the MagLev apparatus, the coefficients of friction affecting both disks are the same, and may be written as
c1 = c2 = mβ. In addition, a value of N = 4 has been shown empirically to yield a close approximation of
the force/distance relationships. Finally, since current in a coil is proportional to the voltage applied to the power
amplifier for that coil, we find that the following equations are useful for design purposes:

mÿ1 = Fu11 + Fu21 − Fm12 − mβ ẏ1 − mg (B.1)
mÿ2 = Fm12 − Fu22 − Fu12 − mβ ẏ2 − mg (B.2)

Fu11 =
u1

a(y1 + b)4
(B.3)

Fu12 =
u1

a(13+ y2 + b)4
(B.4)

Fu22 =
u2

a(−y2 + b)4
(B.5)

Fu21 =
u2

a(13− y1 + b)4
(B.6)

Fm12 =
c

(y12 + d)4
. (B.7)

B.3.4 Nonlinear Sensor

As mentioned previously, the sensors on the MagLev measure the magnet position indirectly, through a nonlinear
function. The raw sensor voltage read ykraw is related to the true magnet position yk through the approximation:

yk ≈
ek

ykraw

+ fk√
ykraw

+ gk + hk · ykraw . (B.8)

The constants {e1, f1, g1, h1} and {e2, f2, g2, h2} may be determined using empirical methods to model the bottom
and top sensors, respectively. For the purposes of control design, we “calibrate” the sensor by calculating an estimate
ykcal of the magnet position

yk ≈ ykcal =
ek

ykraw

+ fk√
ykraw

+ gk + hk · ykraw .

B.4 Linearized Dynamic Model

The dynamics of Eqs. (B.1) to (B.7) are very nonlinear. Furthermore, the sensor measures a nonlinear function of
the true magnet position. We need to linearize these equations around some desired operating point. That is, we
make an approximate linear model of the system in the region of operation space we plan to use.
For the purpose of the present discussion we will consider the case where there is one magnet on the device. The
equation of motion for that magnet is then

mÿ1 =
u1

a(y1 + b)4
+ u2

a(13− y1 + b)4
− mβ ẏ1 − mg. (B.9)
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These dynamics are represented schematically as in Fig. B.14. In the diagram, y1 is the true position of the magnet
and y1raw is the measured voltage corresponding to that position. G(s) = 1/(ms2 + mβs).PSfrag replacements

u1
u2 G(s) sensoractuator y1raw

y1

mg

Figure B.14 Block diagram of MagLev dynamics, single-magnet configuration.

Even in Eq. (B.9) with one magnet on the device we see that the dynamics are nonlinear. (It is not a linear constant
coefficient ordinary differential equation). There are three sources of nonlinearity: the actuator contributes a nonlin-
earity via Eq. (B.9), the sensor contributes another nonlinearity via (the inverse of) Eq. (B.8), and gravity contributes
a nonlinearity via the constant added force mg (LCCODEs do not have constant terms).

B.4.1 Small-Signal Linearization à Model predicts height of magnet yk .

The linearization method is shown in Fig. B.15. The constant force due to gravity is canceled by applying a constant
steady-state voltage u1o to the controller output.3 This alone has the effect of levitating the magnet at a constant
height, in the absence of disturbance.
The voltage y1raw corresponding to the magnet’s height is measured. We compute a calibrated estimate y1cal of the
actual magnet position y1 using the measured sensor voltage y1raw via the relation

y1cal =
e1

y1raw

+ f1√
y1raw

+ g1 + h1 · y1raw . (B.10)

In the diagram, this operation is performed by the “sensor inverse” block. It effectively inverts or cancels the sensor
nonlinearity.
The actuator nonlinearity is not explicitly canceled. Rather, the nonlinear portion of the block diagram inside the
thick gray rectangle is “linearized” using methods described below. A linear approximation of the nonlinear function
inside the gray box is used as the plant model.

PSfrag replacements
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Figure B.15 Linearization: The linear model predicts the actual magnet height. Your controller must specifically invert the sensor nonlin-
earity.

Taylor-Series Function Expansion

Nonlinear equations may be linearized using Taylor-series expansion. You should recall from your calculus courses
that a function may be expanded via a Taylor-series expansion to be represented as a polynomial. For example, the

3This value is a function of the desired steady-state output y1o.
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sin(x) function may be expanded around x = 0 and represented as

sin(x) = x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
· · ·

The expansion is valid for all x . (x in radians).
For small values of x , the sinusoidal function may be approximated as linear. We can say

sin(x) ≈ x

for |x | ¿ 1. In general, linearization of a function is done by keeping the zeroth- and first-order terms of the Taylor-
series expansion. For some functions, linearization gives a good approximation to its form in a small operating
region. Other times, linearization does not work well at all. We are fortunate with the MagLev device to discover
that linearization works well.
A nonlinear system is linearized around an “operating point”. For example, suppose we apply a constant control
effort u1o to the bottom coil to keep the bottom magnet levitated to a height of 2.5 cm in the absence of disturbances.
Then, small changes in the control effort u1 around the constant value of u1o will lead to linear behavior in the
magnet height, plus the constant offset of 2.5 cm. In this example, the operating “point” consists of the constant u 1o

and the constant y1o = 2.5 cm.
The linearized equations of motion are found by solving for the zeroth- and first-order terms of the Taylor-series
expansion of the respective equations about the operating point. For example, the full set of equations of motion for
the MagLev system are listed in Eqs. (B.1) to (B.7).
We customarily re-arrange the equations of motion so that one side of the equation contains the linear terms, and the
other side of the equation contains the nonlinear terms. So, Eqs. (B.1) and (B.2) become:

mÿ1 + mβ ẏ1 = Fu11 + Fu21 − Fm12 − mg
mÿ2 + mβ ẏ2 = Fm12 − Fu22 − Fu12 − mg.

Calling right-hand-side of the first equation α(y1, y2, u1, u2, t), and calling the right-hand-side of the second equation
β(y1, y2, u1, u2, t), we have

α(y1, y2, u1, u2, t) ≈ α(y1o, y2o, u1o, u2o, t)+ ∂α

∂y1

∣
∣
∣
∣

y1o,y2o,u1o,u2o

· (y1 − y1o)+
∂α

∂y2

∣
∣
∣
∣

y1o,y2o,u1o,u2o

· (y2 − y2o)+

∂α

∂u1

∣
∣
∣
∣

y1o,y2o,u1o,u2o

· (u1 − u1o)+
∂α

∂u2

∣
∣
∣
∣

y1o,y2o,u1o,u2o

· (u2 − u2o), (B.11)

where y1o, y2o, u1o and u2o are the respective magnet positions and control efforts that define the operating point.
For the purposes of control design we choose the operating point to be at an equilibrium (the system is at rest and
not accelerating) so that

α(y1o, y2o, u1o, u2o, t) = (Fu11 + Fu21 − Fm12 − mg)
∣
∣

y1o,y2o,u1o,u2o
= 0; (B.12)

also, β(y1o, y2o, u1o, u2o, t) = (Fm12 − Fu22 − Fu12 − mg)
∣
∣

y1o,y2o,u1o,u2o
= 0. (B.13)

Evaluating Eq. (B.11) and using Eq. (B.12) we have

mÿ1 + mβ ẏ1 +
(

4u1o

a(y1o + b)5
− 4u2o

a(13− y1o + b)5
+ 4c
(y12o + d)5

)

(y1 − y1o)−
4c

(y12o + d)5
(y2 − y2o) =

1
a(y1o + b)4

(u1 − u1o)+
1

a(13− y1o + b)4
(u2 − u2o),

which may be rewritten as (where y∗
1 = y1 − y1o, u∗

1 = u1 − u1o and so forth; note also that ÿ1 = ÿ∗
1 and ẏ1 = ẏ∗

1 )

mÿ∗
1 + mβ ẏ∗

1 + (k11 − k21 + km12)y∗
1 − km12 y∗2 = ku11u∗

1 + ku12u∗
2. (B.14)

Similarly for the second differential equation
mÿ∗

2 + mβ ẏ∗
2 + (k22 − k12 + km12)y∗

2 − km12 y∗
1 = ku22u∗

2 + ku21u∗
1, (B.15)
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where

k11=
4u1o

a(y1o + b)5
, k12=

4u1o

a(13+ y2o + b)5
, k21=

4u2o

a(13− y1o + b)5
, k22=

4u2o

a(−y2o + b)5
,

ku11=
1

a(y1o + b)4
, ku12=

1
a(13− y1o + b)4

, ku21=
−1

a(13+ y2o + b)4
, ku22=

−1
a(−y2o + b)4

,

km12=
4c

(y12o + d)5
.

For small motions, and if cross terms are negligible, the dynamics are identical in form to those of the linear discrete
system shown in Fig. B.16.

PSfrag replacements

k11
km12

k22

m1 = m m2 = m

F1 = ku11u∗
1 F2 = ku22u∗

2

y∗1 y∗2

mβ mβ

Figure B.16 Approximate linear block diagram of MIMO MagLev system.

B.4.2 Calculating u1o and u2o

We may calculate the steady-state control effort u1o and u2o for a specific operating point {y1o, y2o} by evaluating
Eqs. (B.12) and (B.13). These give the two equations and two unknowns which may be combined into a matrix
equation:

[
1

a(y1o+b)4
1

a(13−y1o+b)4
−1

a(13+y2o+b)4
−1

a(−y2o+b)4

]
[

u1o

u2o

]

=
[

mg + c
(y12o+d)4

mg − c
(y12o+d)4

]

.

B.5 Using the Model in Simulink

Figure B.17 shows how to incorporate the MagLev into a Simulink diagram. The “Fix Sensor” Simulink subsystems
will be provided to you. These counteract the nonlinearities in the sensor.
The following chart is a summary of fitting parameters for the actuators and sensors of the four systems:

Sys a
[ V

N cm3m

]

b [cm]
1 0.00000416 5.575067
2 0.00000384 5.743740
3 0.00000407 5.700130
4 0.00000576 4.383893

c = 4408140 [N cm5/m], d = 5.193394 [cm]. The mass of each magnetic disk is m = 0.12 kg. The friction
coefficient β ≈ 5[units].
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Bottom Coil

Top Coil

u1*

u2*

y1*

y2*

HW Adapter

yrawycal

Fix Top
Sensor

yrawycal

Fix Bottom
Sensor

D/A

Digital To Analog
Converter1

D/A

Digital To Analog
Converter

y2o

y1ou1o

u2o

A/D

Analog To Digital
Converter1

A/D

Analog To Digital
Converter0

Figure B.17 Diagram showing u∗k input to plant, and y∗k computed from plant output. You will use this as a portion of your control design.

Lab reader prepared by Dr. Gregory L. Plett, ECE Department, University of Colorado at Colorado Springs



(mostly blank)


