
ECE4710/5710: Modeling, Simulation, and Identification of Battery Dynamics 2–1

Equivalent-Circuit Cell Models

2.1: Open-circuit voltage and state of charge

■ We begin our study of battery models by building up behavioral/

phenomenological analogs using common circuit elements.

■ The resulting “equivalent circuit” models will be helpful in getting a

feel for how cells respond to different usage scenarios, and are

adequate for some application design as well.

■ Ultimately, however, we will need a deeper physical understanding of

how the cells work. The rest of the course will focus on that.

Open-circuit voltage (OCV)

■ We start with the simplest possible model. An ideal battery is

modeled as an ideal voltage source. In this model,

• Voltage is not a function of current,

• Voltage is not a function of past usage,

• Voltage is constant. Period.

OCV v(t)

i(t)

−

−

+

+

■ This model is inadequate, but provides a starting point.

• Batteries do supply a voltage to a load.

• And, when the cell is unloaded and in complete equilibrium (i.e.,

“open circuit”), the voltage is fairly predictable.

• An ideal voltage source will be part of our equivalent-circuit model.
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State of Charge

■ When a cell is fully charged, its open-circuit

voltage is higher than when it is discharged.

■ So, we can improve our model by including a

dependence on the charge status of the cell.

OCV(z(t))

v(t)

i(t)

−

−

+

+

■ We define the state of charge (SOC) z(t) of a cell to be:1

• When the cell is fully charged, z = 100 %;

• Also, z = 0 % when the cell is fully discharged.

■ We define the total capacity Q of a cell to be the total amount of

charge removed when discharging a cell from z = 100 % to z = 0 %.

• Q is usually measured in Ah or mAh.

■ We can model SOC as (where ż = dz/dt)

ż(t) = −i(t)/Q

z(t) = z(t0) −
1

Q

∫ t

t0

i(τ ) dτ ,

where the sign of i(t) is positive on discharge.

■ In discrete time, if we assume that current is constant over sampling

interval 1t ,

z[k + 1] = z[k] − i[k]1t/Q.

■ Note that cells are not perfectly efficient. We can accommodate this

fact by including an efficiency factor η(t)

ż(t) = −i(t)η(t)/Q

z[k + 1] = z[k] − i[k]η[k]1t/Q.

1 We will be more precise in our definitions later. But, these will suffice for now.
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• The term η[k] is called “coulombic efficiency.”

• We model η[k] ≤ 1 on charge, as some charge is typically lost due

to unwanted side reactions.

• We usually model η[k] = 1 on discharge.

■ Don’t confuse coulombic (or charge) efficiency with energy efficiency.

• Coulombic efficiency in a typical lithium-ion cell is around 99 % and

is equal to (charge out)/(charge in).

• Energy efficiency is closer to 95 %, and is equal to (energy

out)/(energy in).

◆ Energy is lost in resistive heating, but charge is not lost.

■ OCV is plotted as a function of

SOC for several lithium-ion

chemistries.

■ Note that OCV is also a function

of temperature—we can include

that in the model as

OCV(z(t), T (t)). 0 20 40 60 80 100
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■ Also note that “depth of discharge” or DOD is the inverse of SOC:

• DOD = 1 − SOC if it is being expressed as a fraction.

• DOD is sometimes expressed in Ah: DOD = Q(1 − SOC).

■ So, it’s possible to plot OCV curves versus DOD as well as SOC.
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2.2: Linear polarization

Equivalent series resistance

■ A cell’s voltage drops when it is under load.

■ This can be modeled, in part, as a resistance

in series with the ideal voltage source

v(t) = OCV(z(t)) − i(t)R0.

OCV(z(t))

v(t)
−

−

+

+R0

■ Note that v(t) > OCV(z(t)) on charge, and v(t) < OCV(z(t)) on

discharge.

■ This implies that power is dissipated by the resistor R as heat, and

therefore that energy efficiency is not perfect.

■ This model is sufficient for many simple electronic circuit designs, but

not for advanced consumer electronics and xEV applications.

Diffusion voltages

■ Polarization refers to any departure of the cell’s terminal voltage away

from open-circuit voltage due to a passage of current.

■ i(t) × R0 is one example of

polarization, modeling an

instantaneous response to a

change in input current.

■ In practice, we also observe a

dynamic (non-instantaneous)

response to a current step. 0 10 20 30 40 50 60
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■ Similarly, when a cell is allowed to rest, its voltage does not

immediately return to OCV, but decays gradually (sometimes taking

an hour or more to approach OCV).

■ We will find out later that this phenomena is caused by slow diffusion

processes in the cell, so we will refer to this slowly-changing voltage

as a diffusion voltage.

■ Its effect can be closely approximated

in a circuit using one or more parallel

resistor-capacitor sub-circuits.

■ The cell voltage is modeled as

v(t) = OCV(z(t)) − vC1
(t) − i(t)R0.

OCV(z(t))

R0

v(t)

R1

C1−

−

+

+

■ When using data to identify model parameters, it becomes simpler if

we write this expression in terms of element currents instead:

v(t) = OCV(z(t)) − R1iR1
(t) − R0i(t).

■ To find an expression for the iR1
(t), we recognize that the current

through R1 plus the current through C1 must be equal to i(t).

■ Further, iC1
(t) = C1v̇C1

(t), which gives

iR1
(t) + C1v̇C1

(t) = i(t).

■ Then, since vC1
(t) = R1iR1

(t),

iR1
(t) + R1C1

diR1
(t)

dt
= i(t)

diR1
(t)

dt
= −

1

R1C1

iR1
(t) +

1

R1C1

i(t).

■ This differential equation can be simulated as-is to determine iR1
(t).

We’ll see how to convert to discrete-time, shortly.
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Warburg impedance

■ In the literature, it is not uncommon to see equivalent-circuit models

containing a so-called “Warburg impedance” element, ZW .

■ For example, the Randles circuit

(shown without OCV) is based on

electrochemical principles, a bit like

we will see in later chapters.

Cdl

Rct

Rs

ZW

■ In the circuit,

• Rs models the electrolyte resistance,

• Rct is the charge-transfer resistance that models the voltage drop

over the electrode–electrolyte interface due to a load,

• Cdl is the double-layer capacitance that models the effect of

charges building up in the electrolyte at the electrode surface, and

• ZW is the Warburg impedance.

■ The frequency-dependent Warburg impedance ZW = AW/
√

jω

models diffusion of lithium ions in the electrodes.

■ The phase contributed to the

circuit by this element is 45◦,

which is most easily observed in

a Nyquist plot of a cell’s

electrochemical impedance

spectrum as a straight line at

45◦ at low frequency. 0 5 10 15
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■ The figure shows a simulated electrochemical impedance spectrum

representing a realistic cell.
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■ The equivalent series resistance R0 for this cell is about 1.5 m�,

found as the infinite-frequency impedance.

■ The low-frequency impedance is represented by the straight line at

45◦, and models lithium diffusion in the solid particles.

■ At mid-range frequencies, the semi-circular loop is caused by charge-

transfer dynamics, which can be modeled as a single R–C pair.

■ There is no simple differential-equation representation of a Warburg

impedance, which makes precise circuit simulation intractable.

■ However, it is possible to reproduce the effect of a Warburg

impedance employing multiple resistor–capacitor networks in series.
C1 C2 C3

R1 R2 R3

ZW
= . . .

■ For an exact equivalence, an infinite number of resistor–capacitor

networks are needed; but, the circuit can often be modeled very well

over some frequency range using a small number of R–C pairs.

■ The double-layer capacitance is often omitted as it has little impact on

the Randles circuit performance except at very high frequencies.

■ With Cdl removed from the circuit, and the Warburg impedance

replaced by a small finite number of R–C circuits, the cell model

collapses to the one we have already seen, with additional R–C pairs.

■ When we discuss implementation of physics-based models that have

this type of impedance relationship intrinsically built in, we will see

how to automatically create ODEs that accurately model the diffusion.
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2.3: Converting to discrete time

■ The R–C models we have seen to date are expressed in continuous

time as ordinary differential equations.

■ We wish to convert them to discrete-time ordinary difference

equations (ODEs) for easier use in a final application.

■ We start by deriving a generic process, which we will then apply to

the equation we’ve seen. Consider

ẋ(t) = ax(t) + bu(t)

x(t) = eat x(0) +

∫ t

0

ea(t−τ)bu(τ ) dτ

︸ ︷︷ ︸

convolution

.

■ How did we get this result?

1. ẋ(t) − ax(t) = bu(t).

2. e−at[ẋ(t) − ax(t)] =
d

dt
[e−at x(t)] = e−atbu(t).

3.

∫ t

0

d

dτ
[e−aτ x(τ )] dτ = e−at x(t) − x(0) =

∫ t

0

e−aτbu(τ ) dτ .

■ We wish to evaluate x(t) at discrete times x[k]
△
= x(k1t). So then,

x[k + 1] = x((k + 1)1t)

= ea(k+1)1t x(0) +

∫ (k+1)1t

0

ea((k+1)1t−τ)bu(τ ) dτ .

■ With malice aforethought, break up the integral into two pieces.

x[k + 1] = ea1teak1t x(0) +

∫ k1t

0

ea((k+1)1t−τ)bu(τ ) dτ

+

∫ (k+1)1t

k1t

ea((k+1)1t−τ)bu(τ ) dτ
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= ea1teak1t x(0) +

∫ k1t

0

ea1tea(k1t−τ)bu(τ ) dτ

+

∫ (k+1)1t

k1t

ea((k+1)1t−τ)bu(τ ) dτ

= ea1t x(k1t) +

∫ (k+1)1t

k1t

ea((k+1)1t−τ)bu(τ ) dτ

= ea1t x[k] +

∫ (k+1)1t

k1t

ea((k+1)1t−τ)bu(τ ) dτ .

■ Assume u(τ ) is constant from k1t to (k + 1)1t and equal to u(k1t)

x[k + 1] = ea1t x[k] + ea(k+1)1t

(∫ (k+1)1t

k1t

e−aτ dτ

)

bu[k]

= ea1t x[k] + ea(k+1)1t

(

−
1

a
e−aτ

∣
∣
∣
∣

(k+1)1t

k1t

)

bu[k]

= ea1t x[k] +
1

a
ea(k+1)1t

(

e−ak1t − e−a(k+1)1t
)

bu[k]

= ea1t x[k] +
1

a

(

ea1t − 1
)

bu[k].

■ To use this result for the ODE describing the R–C circuit,

a = −
1

R1C1

, b =
1

R1C1

, x[k] = iR1
[k], and u[k] = i[k].

■ Substituting these values into the generic result, we get

iR1
[k + 1] = exp

(

−
1t

R1C1

)

iR1
[k]

+ (−R1C1)

(

exp

(

−
1t

R1C1

)

− 1

)(
1

R1C1

)

i[k]

= exp

(

−
1t

R1C1

)

iR1
[k] +

(

1 − exp

(

−
1t

R1C1

))

i[k].
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Ballparking parameters

■ Note that if a single parallel R–C branch is in the model, it is quite

simple to get a ballpark idea of the parameter values.

■ First, conduct a pulse test on the

cell, similar to the one shown at

the beginning of Topic 2.2.

■ The immediate jump in voltage

at the application of the current

pulse is 1v0 = R01i , from which

we can deduce R0.
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1v0=R01i

1v∞=(R0+R1)1i

≈ 4R1C1

■ The steady-state voltage change, is 1v∞ = (R0 + R1)1i , from which

we can deduce R1.

■ The pulse response converges to steady state in about four or five

time constants, 1t = 4R1C1, from which we can deduce the product

of R1 and C1, and therefore C1.

■ For the cell test conducted to gather the plotted data, 1i = 5 A,

|1v0| = 41 mV, and |1v∞| = 120 mV.

• From these values, we compute R0 ≈ 8.2 m� and R1 ≈ 15.8 m�.

■ The time to convergence is about 60 min − 20 min = 40 min = 2400 s.

So, we might estimate

4R1C1 ≈ 2400 s and C1 ≈
2400

4R1

.

• Using our prior result for R1, we can compute C1 ≈ 38 kF.

■ If the model uses multiple parallel R–C branches in series, this simple

approach will not work—we’ll look at another approach later.
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2.4: Hysteresis voltages

■ If a cell is allowed to rest for long enough time, diffusion voltages

decay to zero, so the prior model voltage decays to OCV.

■ In reality, this doesn’t occur. For

every SOC, there is a range of

possible stable “OCV” values.

■ Plot shows C/30 (approximate

equilibrium) test.

■ Evidence of hysteresis: Ignoring

it causes large prediction errors.
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Evidence of hysteresis

■ Note the distinction between hysteresis and diffusion voltages:

Diffusion voltages change with time but hysteresis voltages change

when SOC changes. They are not directly a function of time.

SOC-varying hysteresis

■ Let h(z, t) be the hysteresis voltage as a function of SOC and time,

and let ż = dz/dt . Then, one (not too great) model of hysteresis is

dh(z, t)

dz
= γ sgn(ż)

(

M(z, ż) − h(z, t)
)

,

where M(z, ż) is a function that gives the maximum polarization due

to hysteresis as a function of SOC and the rate-of-change of SOC.

■ Specifically, M(z, ż) is positive for charge (ż > 0) and is negative for

discharge (ż < 0).

■ The M(z, ż) − h(z, t) term in the differential equation states that the

rate-of-change of hysteresis voltage is proportional to the distance
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away from the major hysteresis loop, leading to a kind of exponential

decay of voltage to the major loop.

■ The term in front of this has a positive constant γ , which tunes the

rate of decay, and sgn(ż), which forces the equation to be stable for

both charge and discharge.

■ In order to fit the differential equation for h(z, t) into our model, we

must manipulate it to be a differential equation in time, not in SOC.

■ We accomplish this by multiplying both sides of the equation by dz/dt .

dh(z, t)

dz

dz

dt
= γ sgn(ż)

(

M(z, ż) − h(z, t)
)dz

dt
.

■ Note that dz/dt = −η(t)i(t)/Q, and that ż sgn(ż) = |ż|. Thus,

ḣ(t) = −

∣
∣
∣
∣

η(t)i(t)γ

Q

∣
∣
∣
∣

h(t) +

∣
∣
∣
∣

η(t)i(t)γ

Q

∣
∣
∣
∣

M(z, ż).

■ This may be converted into a difference equation for our discrete-time

application using the above techniques (assuming that i(t) and

M(z, ż) are constant over the sample period):

h[k + 1] = exp

(

−

∣
∣
∣
∣

η[k]i[k]γ1t

Q

∣
∣
∣
∣

)

h[k]

+

(

1 − exp

(

−

∣
∣
∣
∣

η[k]i[k]γ1t

Q

∣
∣
∣
∣

))

M(z, ż).

■ Note that this is a linear-time-varying system as the factors

multiplying the state and input change with i[k] and hence with time.

■ The simplest representation is when M(z, ż) = −M sgn(i[k]), when

h[k + 1] = exp

(

−

∣
∣
∣
∣

η[k]i[k]γ1t

Q

∣
∣
∣
∣

)

h[k]

−

(

1 − exp

(

−

∣
∣
∣
∣

η[k]i[k]γ1t

Q

∣
∣
∣
∣

))

M sgn(i[k]).
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■ With this representation −M ≤ h[k] ≤ M at all times, and h[k] has

units of volts.

■ When attempting to find the model parameters, we will find it valuable

to re-write this in an equivalent but slightly different representation,

which has unitless hysteresis state −1 ≤ h[k] ≤ 1,

h[k + 1] = exp

(

−

∣
∣
∣
∣

η[k]i[k]γ1t

Q

∣
∣
∣
∣

)

h[k]

−

(

1 − exp

(

−

∣
∣
∣
∣

η[k]i[k]γ1t

Q

∣
∣
∣
∣

))

sgn(i[k])

Hysteresis voltage = Mh[k].

■ This makes the output equation linear in M, which will make

estimating M from lab-test data easier.

Instantaneous hysteresis

■ In addition to the type of dynamic hysteresis that changes as SOC

changes, we also often see benefit in modeling an instantaneous

change in hysteresis voltage when the sign of current changes.

■ Define

s[k] =







sgn(i[k]), |i[k]| > 0;

s[k − 1], otherwise.

■ Then, the instantaneous hysteresis is modeled as

Instantaneous hysteresis voltage = M0s[k],

and overall hysteresis is

Hysteresis voltage = M0s[k] + Mh[k].
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2.5: The Enhanced Self-Correcting (ESC) cell model; OCV testing

■ The “enhanced self-correcting”

(ESC) cell model combines all

the aforementioned elements.

■ Enhanced: Model includes a

(poor) description of hysteresis

(which is still better than not

including it at all).

OCV(z(t))
R0

v(t)

R1

C1

hyst

−

−

+

+

■ Self correcting: Model voltage converges to OCV + hysteresis on

rest, and to OCV + hysteresis − i
∑

R on constant current event.

■ The circuit can contain more than a single parallel resistor-capacitor

pair. We can define vector valued

iR[k + 1] =









exp

(
−1t

R1C1

)

0 · · ·

0 exp

(
−1t

R2C2

)

... . . .









︸ ︷︷ ︸

ARC

iR[k]

+









(

1 − exp

(
−1t

R1C1

))

(

1 − exp

(
−1t

R2C2

))

...









︸ ︷︷ ︸

BRC

i[k].

■ Then, if we define AH [k] = exp

(

−

∣
∣
∣
∣

η[k]i[k]γ1t

Q

∣
∣
∣
∣

)

,
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




z[k + 1]

iR[k + 1]

h[k + 1]




 =






1 0 0

0 ARC 0

0 0 AH[k]











z[k]

iR[k]

h[k]






+








−
η[k]1t

Q
0

BRC 0

0 (AH[k] − 1)








[

i[k]

sgn(i[k])

]

.

■ This is the ESC “state equation”, and describes all dynamic effects.

■ The “output equation” is

v[k] = OCV(z[k], T [k]) + M0s[k] + Mh[k] −
∑

j

R j iR j
[k] − R0i[k].

■ These two equations, with associated parameter values filled in,

comprise the ESC model.

■ Note that all model parameters must be non-negative.

Cell testing to determine the OCV relationship

■ To find specific numeric values for the ESC model parameters, we

must perform experiments on the cells of interest.

■ A cell’s OCV is a static function of SOC and temperature; all other

aspects of a cell’s performance are dynamic in some sense. Separate

cell tests are performed to collect data for the OCV versus SOC

relationship and for the dynamic relationship.

■ We first discuss experiments to determine the OCV relationship.

• The cell is very slowly discharged, then very slowly charged while

measuring cell voltage and accumulated ampere hours.
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• Tests are run at a number of temperatures spread over the

operational range of the cell.

■ The following procedure is conducted for each temperature. (vmin and

vmax are cutoff voltages, specified by the cell manufacturer.)

OCV test script #1 (at test temperature)

1. Soak the fully charged cell at the test temperature for at least two

hours to ensure a uniform temperature throughout the cell.

2. Discharge the cell at a constant-current rate of C/30 until cell terminal

voltage equals manufacturer-specified vmin.

OCV test script #2 (at 25 ◦C)

3. Soak the cell at 25 ◦C for at least two hours to ensure a uniform

temperature throughout the cell.

4. If the cell voltage is below vmin, then charge the cell at a C/30 rate until

the voltage is equal to vmin. If the cell voltage is above vmin, then

discharge the cell at a C/30 rate until the voltage is equal to vmin.

OCV test script #3 (at test temperature)

5. Soak the cell at the test temperature for at least two hours to ensure a

uniform temperature throughout the cell.

6. Charge the cell at a constant-current rate of C/30 until the cell terminal

voltage equals vmax.
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OCV test script #4 (at 25 ◦C)

7. Soak the cell at 25 ◦C for at least two hours to ensure a uniform

temperature throughout the cell.

8. If the cell voltage is below vmax, then charge the cell at a C/30 rate until

the voltage is equal to vmax. If the cell voltage is above vmax, then

discharge the cell at a C/30 rate until the voltage is equal to vmax.

■ Voltage, accumulated ampere-hours discharged, and accumulated

ampere-hours charged are recorded periodically (e.g., once per

second) during every step.

■ Because a very low current rate is used, there is negligible heat

generation in the cell, and we can consider all data points to be

collected at the ambient test temperature for every script (but,

temperature data can be measured as well to verify this assumption).

■ Raw test output for scripts 1 and 3 are shown.
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2.6: Determining Coulombic efficiency

■ There are some subtle points if the test temperature is not 25 ◦C.

■ Prior to step 2, the cell is still at 100 % state of charge, but its voltage

is no longer vmax because OCV is temperature-dependent.

■ At the end of step 2, the cell will be at 0 % state of charge only if the

test temperature is 25 ◦C because, again, OCV is temperature-

dependent, and the vmin specification defines 0 % SOC only for 25 ◦C.

• At other temperatures, the actual state of charge may be above or

below 0 % at the end of step 2.

■ Similarly, at the end of step 6, the cell will be at 100 % state of charge

only if the test temperature is 25 ◦C.

• At other temperatures, the actual state of charge may be above or

below 100 % at the end of step 6.

■ This is why we must execute test scripts 2 and 4, to ensure that the

cell is fully discharged and charged, respectively, before starting test

scripts 3 and 1 (for the next temperature to be tested).

■ These considerations require some careful processing of the data.

■ Let’s consider processing data for test temperature 25 ◦C first.

• This is the easiest case because all four scripts are then executed

at 25 ◦C—no other temperatures are involved.

• And, since voltages vmax and vmin are calibrated to 25 ◦C, the net

ampere-hours discharged over all steps equals total capacity Q.

■ The net ampere-hours charged over all steps turns out to be slightly

higher than Q since the coulombic efficiency of the cell is not perfect.
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■ We compute the coulombic efficiency at 25 ◦C as

η(25 ◦C) =
total ampere-hours discharged in all steps at 25 ◦C

total ampere-hours charged in all steps at 25 ◦C
.

■ At a test temperature T different from 25 ◦C, we must follow a

somewhat different approach.

■ We don’t know a priori the cell state of charge at the end of steps 2

and 6.

■ However, we do know that the cell is at 0 % SOC at the end of step 4

and is 100 % at the end of step 8.

■ We use this information to compute first the coulombic efficiency at

test temperature T :

η(T ) =
total ampere-hours discharged

total ampere-hours charged at temperature T

− η(25 ◦C)
total ampere-hours charged at 25 ◦C

total ampere-hours charged at temperature T
.

■ The figure shows coulombic efficiency calculations for six different

lithium-ion cells as a function of temperature.

■ The efficiency should always

be less than one, but

experimental accuracy of

accumulated ampere hours is

inexact, and these calculations

are reasonable, to within
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2.7: Determining temperature-dependent OCV

■ We now compute an SOC corresponding to every data sample.

■ The depth-of-discharge (in Ah) at every point in time is calculated as

DOD(t) = total Ah discharged until t

− η(25 ◦C) × total Ah charged at 25 ◦C until t

− η(T ) × total Ah charged at temperature T until t.

■ Using this metric, the cell capacity Q (measured at temperature T ) is

equal to the depth-of-discharge at the end of step 4.

■ Likewise, the SOC corresponding to every data sample is then

state of charge(t) = 1 −
depth of discharge(t)

Q
.

■ As a check, the state of charge at the end of step 4 must be 0 %, and

the state of charge at the end of step 8 must be 100 %.

■ The figure plots discharge

voltage from step 2 versus

state of charge (lower solid

curve) and charge voltage

from step 6 versus state of

charge (upper solid curve).
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■ These are the same data as shown before, but now presented as a

function of state of charge rather than test time.

■ This example shows that there is a challenge in determining the

open-circuit-voltage relationship at all states-of-charge:
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• Missing discharge voltages at low SOC because test encountered

cutoff voltage vmin in step 2 before 0 % SOC was reached;

• Missing charge voltages at high SOC because test encountered

cutoff voltage vmax in step 6 before 100 % SOC was reached.

■ We can estimate the cell’s ohmic resistance R0 at high SOC via

instantaneous voltage change when test moves from step 1 to step 2.

■ We can estimate the ohmic resistance at low SOC by looking at

voltage change when the test moves from step 5 to step 6.

■ Also, we can approximate the steady-state resistance at 50 % SOC by

considering the voltage change between the discharge voltage curve

and the charge voltage curve at the 50 % SOC point.

■ Then, we can assume that the resistance changes linearly from its

0 % SOC value to its 50 % SOC value, and then linearly again from its

50 % SOC value to its 100 % SOC value.

• At SOCs lower than 50 %, the OCV is estimated as the charge

voltage plus charge current times resistance at that SOC;

• At SOCs higher than 50 %, the OCV is estimated as the discharge

voltage plus discharge current times resistance at that SOC.

■ The figure shows this approximate OCV estimate as a dashed line.

■ We combine these individual approximate single-temperature OCV

results to make a final model of the form

OCV(z(t), T (t)) = OCV0(z(t)) + T (t) × OCVrel(z(t)),

where OCV0(z(t)) is the OCV relationship at 0 ◦C , and OCVrel(z(t))

(V/◦C) is the linear temperature correction factor at each SOC.
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■ Once OCV0(z(t)) and OCVrel(z(t)) are determined, OCV(z(t), T (t))

can be computed via two computationally efficient 1D table lookups.

■ To make OCV0(z(t)) and OCVrel(z(t)), note that we can write








Approx. OCV at SOC z, temp. T1

Approx. OCV at SOC z, temp. T2

...

Approx. OCV at SOC z, temp. Tn









︸ ︷︷ ︸

Y

=









1 T1

1 T2

... ...

1 Tn









︸ ︷︷ ︸

A

[

OCV0(z)

OCVrel(z)

]

︸ ︷︷ ︸

X

at every state of charge z.

■ One way to compute X from A and Y is to use the least-squares

solution, which is written mathematically as X = A†Y, where the

dagger symbol (†) represents a matrix pseudo-inverse, and is

computed in MATLAB as X=A\Y;

• We tend to use data only from tests above 0 ◦C because accuracy

degrades at low temperatures due to high cell resistances.

■ The figures plot the outcome of this overall process for six different

lithium-ion cells.
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2.8: Cell testing to determine the dynamic relationship

■ Dynamic data is captured while exercising the cell with a profile of

current versus time that is representative of the final application.

■ The figure shows a sample

profile for an automotive

application, the “urban

dynamometer drive schedule”

(UDDS) profile.

■ This current profile is repeated

over the entire SOC and

temperature range of the cell.
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Dynamic test script #1 (at test temperature)

1. Soak the fully charged cell at the test temperature for at least two

hours to ensure a uniform temperature throughout the cell.

2. the cell using a constant current at a C/1 rate long enough to deplete

about 10 % of capacity (helping ensure we avoid over-voltage

conditions during charging portions of the profile).

3. Execute dynamic profiles over the SOC range of interest, nominally

from 90 % SOC down to 10 % SOC.

Dynamic test script #2 (at 25 ◦C)

4. Soak the cell at 25 ◦C for at least two hours to ensure a uniform

temperature throughout the cell.

5. If the cell voltage is below vmin, then charge the cell at a C/30 rate until

the voltage is equal to vmin. If the cell voltage is above vmin, then
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discharge the cell at a C/30 rate until the voltage is equal to vmin. A

follow-on dither profile can be used to eliminate hysteresis to the

greatest degree possible.

Dynamic test script #3 (at 25 ◦C)

6. Charge the cell using a constant current at a C/1 rate until voltage is

equal to vmax. Then, maintain voltage constant at vmax until current

drops below C/30. A follow-on dither profile at the end can be used to

help eliminate hysteresis.

■ Voltage and current are recorded every second. Cell temperature

data may also be collected.
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■ The dynamic data is used to identify all ESC parameters, except for

the OCV versus SOC relationship, which has already been described.

• We first compute η and Q from the data, directly, as we did for the

OCV test results.

• We use a technique called subspace system identification to find

the R–C time constants.

• We then guess a value for γ .

• Using γ , we compute h[k]; we also compute z[k], s[k], iR j
[k] and

OCV(z[k]).

• This leaves the following unexplained part of the measured cell

voltage

ṽ[k] = v[k] − OCV(z[k], T [k])

= Mh[k] + M0s[k] −
∑

j

R j iR j
[k] − R0i[k].

• We can solve this for the unknowns

[

ṽ[k]
]

︸ ︷︷ ︸

Y

=

[

h[k] s[k] −i[k] −iR j
[k]

]

︸ ︷︷ ︸

A









M

M0

R0

R j









︸ ︷︷ ︸

X

,

via least-squares solution X = A†Y.

• We then compute the RMS error and update γ to minimize this

error.
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2.9: Matlab code to create models from data and to simulate

■ A MATLAB toolbox and data set comprising code implementing these

steps and companion cell-test data collected from a number of cells is

available on the book web site.

■ Here, we quickly introduce the main code components. A great deal

of learning is possible if this discussion is coupled with a diligent

examination of the code itself, to see how the steps are implemented.

Creating the model

■ The figure below depicts the overall process for creating an enhanced

self-correcting (ESC) cell model.

Testing processDynamic.m

Relationship
OCV

ESC Cell
ModelData

Test

Data
TestOCV

Testing

Dynamic

processOCV.m

■ The blue boxes = laboratory processes; the yellow boxes = data files;

and the green boxes = processing by MATLAB functions.

Using the model

■ Once the model is

created, it is ready to be

used.

■ The figure depicts the

process. Model

simCell.m
Predicted
Voltage

Cell
Current

Initial
State

ESC Cell
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■ The following code illustrates

how to use the simCell.m

function.

■ Output is displayed to the right.
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Truth
Model

load DYN_Files/E2_DYN/E2_DYN_35_P25.mat % load data file

load DYN_Files/E2model.mat % load model file

time = DYNData.script1.time; % make variables easier to access

voltage = DYNData.script1.voltage;

current = DYNData.script1.current;

ind = find(diff(time)<=0); % get rid of duplicate time steps

time(ind+1)=[]; voltage(ind+1)=[]; current(ind+1)=[];

t1=time(1); t2=time(end); % make sure evenly sampled in time

deltaT = 1; t = (t1:deltaT:t2) - t1; % one-second sampling

current = interp1(time,current,t1:deltaT:t2);

voltage = interp1(time,voltage,t1:deltaT:t2);

vest = simCell(current,25,deltaT,model,1,0,0); % simulate cell

figure(1); clf; % plot some results

plot(t/60,voltage,t/60,vest);

legend('Truth','Model','location','southwest');

xlabel('Time (min)'); ylabel('Voltage (V)');

title('Example of simCell.m');

Model internals

■ Sometimes, it may be important to query the model parameters.

• This may be done by directly accessing fields in “model”.

• But, this is generally not considered good programming practice.
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• Instead, the toolbox provides data accessor functions.

■ In order to determine OCV at one or more SOCs, the

OCVfromSOCtemp.m function may be used. For example,

load DYN_Files/E2model.mat % load model file

z = 0:0.01:1; % make SOC input vector

T = 25; % set temperature value

plot(z,OCVfromSOCtemp(z,T,model));

■ In order to determine SOC from one or more at-rest OCVs, the

SOCfromOCVtemp.m function may be used. For example,

load DYN_Files/E2model.mat % load model file

v = 2.5:0.01:4.2; % make voltage input vector

T = 25; % set temperature value

plot(v,SOCfromOCVtemp(v,T,model));

■ Finally, in order to determine a model dynamic parameter value, the

getParamESC.m function may be used. For example,

load DYN_Files/E2model.mat % load model file

T = 25; % set temperature value

gamma = getParamESC('GParam',T,model); % hysteresis rate factor

■ This requires that the user have some knowledge of the internal

structure of the model data structure. (Again, it is not recommended

that the user access the fields of this data structure directly. However,

the field name is required as input to the getParamESC.m function.)

■ See table on next page.
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Table of model fields

Identifier field

name An identifying string storing a name for the cell type

Fields pertaining to the OCV versus SOC relationship

OCV0 Vector of OCV versus SOC at 0 ◦C [V]

OCVrel Vector of change in OCV versus SOC per ◦C [V/◦C]

SOC SOC vector at which OCV0 and OCVrel are stored

SOC0 Vector of SOC versus OCV at 0 ◦C (unitless)

SOCrel Vector of change in SOC versus OCV per ◦C [1/◦C]

OCV OCV vector at which SOC0 and SOCrel are stored

Fields pertaining to the dynamic relationship

temps Temperatures at which dynamic parameters stored [◦C]

QParam Capacity Q at each temperature [Ah]

etaParam Coulombic efficiency η at each temperature (unitless)

GParam Hysteresis “gamma” parameter γ (unitless)

MParam Hysteresis M parameter [V]

M0Param Hysteresis M0 parameter [V]

R0Param Series resistance parameter R0 [�]

RCParam The R–C time constant parameter R jC j [s]

RParam Resistance R j of the R–C parameter [�]
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2.10: Example results

■ To give a better feel for the capabilities of an equivalent-circuit type

model, we present some modeling results in this section.

■ Data were collected from a 25 Ah automotive battery cell using the

procedures outlined in this chapter, and open-circuit-voltage and

dynamic modeling parameters were estimated from the data (using

one R–C sub-circuit in the model).

■ Here, we concentrate on simulating the optimized model open-loop,

and comparing its predictions against the measured voltage data for a

test conducted at 25 ◦C.

■ The figure shows an overlay of true and model-predicted voltage over

the entire 10 h test.
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■ The root-mean-squared difference between the true and model

results was 5.37 mV in this case.

■ The right frame of the figure zooms in to one UDDS cycle, more

clearly showing that the circuit model captures the cell performance

quite well.
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■ Optimized temperature-dependent parameter values for seven

different cells are shown below (tests were conducted from −25 ◦C to

45 ◦C in 10 C◦ steps).
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■ These particular results are characteristic of results obtained from

other cells as well, in a variety of ways.

• ESR R0 decreases exponentially as temperature increases. This is

a near-universal result. Any model lacking this feature is suspect.

• Resistor–capacitor resistances R j also decrease (roughly)

exponentially as temperature increases. This is also expected.

• Resistor–capacitor time constants tend to increase with

temperature.
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◆ This might actually seem a surprising result, as we would expect

the cell dynamics to speed up at warmer temperatures.

◆ However, results in Chap. 7 (based on physics models) show

that at some states of charge the cell speeds up while at other

states of charge the cell slows down overall.

◆ The result in the figure shows a single optimized time constant

over all SOC, so it is not necessarily a surprising result.

◆ Moreover, the results in Chap. 7 lead us to realize that this

relationship should not be expected to be monotonic.

• Hysteresis is generally “speeding up” (that is, a smaller change in

SOC is required to effect a large change in the hysteresis state)

and decreasing in magnitude as temperature increases.

Hysteresis levels generally decrease as temperature increases.

• The measured capacity is very nearly constant across temperature

(as it should be).

■ In practice, the model will need to be evaluated at temperatures not

included in the testing protocol.

• Linear interpolation is used to approximate parameter values from

tables made via the system-identification process.

• This assumes a smoothness in the functions as temperature

varies. We don’t always (i.e., rarely) see this from the initial

system-identification output.

• Some hand smoothing of parameter relationships is usually

necessary to make models that match measured data nearly as

well as the automatically tuned versions, but which work better at

intermediate temperatures.
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Where from here?

■ Equivalent circuit models of battery cells are very powerful and

sufficient for many circuit designs and control algorithm development.

■ So, are we done? (No.)

■ Circuit models lack predictive power over the long term.

• How will a cell behave if it is subjected to stimuli not used during

training of the model?

• How will a cell behave as it ages?

• How can we control a cell to maximize its utility while maximizing

its life?

■ So, we now start to look at physics-based models of cells, which

enable us to increase the predictive power of our models.

■ These physics-based models are originally very complex, but

ultimately we will be able to reduce them to models of similar

complexity to the equivalent circuit models we have studied in this

chapter.

Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2011–2018, Gregory L. Plett


